Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generically Mañé set supports uniquely ergodic measure for residual cohomology class


Author: Jianlu Zhang
Journal: Proc. Amer. Math. Soc. 145 (2017), 3973-3980
MSC (2010): Primary 37J50; Secondary 70G75
DOI: https://doi.org/10.1090/proc/13581
Published electronically: April 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we proved that for generic Tonelli Lagrangian, there always exists a residual set $ \mathcal {G}\subset H^1(M,\mathbb{R})$ such that

$\displaystyle \widetilde {\mathcal {M}}(c)=\widetilde {\mathcal {A}}(c)=\widetilde {\mathcal {N}}(c),\quad \forall c\in \mathcal {G}, $

with $ \widetilde {\mathcal {M}}(c)$ supports on a uniquely ergodic measure.

References [Enhancements On Off] (What's this?)

  • [1] Marie-Claude Arnaud, A nondifferentiable essential irrational invariant curve for a $ C^1$ symplectic twist map, J. Mod. Dyn. 5 (2011), no. 3, 583-591. MR 2854096, https://doi.org/10.3934/jmd.2011.5.583
  • [2] Patrick Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 5, 1533-1568 (English, with English and French summaries). MR 1935556
  • [3] Chong-Qing Cheng and Jun Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom. 67 (2004), no. 3, 457-517. MR 2153027
  • [4] Chong-Qing Cheng and Jun Yan, Arnold diffusion in Hamiltonian systems: a priori unstable case, J. Differential Geom. 82 (2009), no. 2, 229-277. MR 2520793
  • [5] Gonzalo Contreras, Jorge Delgado, and Renato Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 155-196. MR 1479500, https://doi.org/10.1007/BF01233390
  • [6] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Book to appear, the Cambridge Press.
  • [7] Albert Fathi and Antonio Siconolfi, Existence of $ C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math. 155 (2004), no. 2, 363-388. MR 2031431, https://doi.org/10.1007/s00222-003-0323-6
  • [8] John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), no. 2, 169-207. MR 1109661, https://doi.org/10.1007/BF02571383
  • [9] John N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1349-1386 (English, with English and French summaries). MR 1275203
  • [10] Ricardo Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (1996), no. 2, 273-310. MR 1384478, https://doi.org/10.1088/0951-7715/9/2/002
  • [11] Ricardo Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 141-153. MR 1479499, https://doi.org/10.1007/BF01233389
  • [12] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
  • [13] J. Li and J. Zhang Optimal Transportation for Generalized Lagrangian, International Journal of Control & Automation, 2013, 6(1):32-40.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37J50, 70G75

Retrieve articles in all journals with MSC (2010): 37J50, 70G75


Additional Information

Jianlu Zhang
Affiliation: Department of Mathematics, University of Toronto, Ontario, Canada
Email: jianlu.zhang@utoronto.ca

DOI: https://doi.org/10.1090/proc/13581
Keywords: Genericity, minimizing measure, Ma\~n\'e set, Tonelli Lagrangian
Received by editor(s): August 27, 2016
Received by editor(s) in revised form: October 14, 2016
Published electronically: April 28, 2017
Communicated by: Yingfei Yi
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society