Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A containment result in $ P^n$ and the Chudnovsky Conjecture


Authors: Marcin Dumnicki and Halszka Tutaj-Gasińska
Journal: Proc. Amer. Math. Soc. 145 (2017), 3689-3694
MSC (2010): Primary 13A15, 13A02
DOI: https://doi.org/10.1090/proc/13582
Published electronically: February 22, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the containment $ I^{(nm)}\subset M^{(n-1)m}I^m$, for a radical ideal $ I$ of $ s$ general points in $ \mathbb{P}^n$, where $ s\geq 2^n$. As a corollary we get that the Chudnovsky Conjecture holds for a very general set of at least $ 2^n$ points in $ \mathbb{P}^n$.


References [Enhancements On Off] (What's this?)

  • [1] Alessandro Arsie and Jon Eivind Vatne, A note on symbolic and ordinary powers of homogeneous ideals, Ann. Univ. Ferrara Sez. VII (N.S.) 49 (2003), 19-30 (English, with English and Italian summaries). MR 2164987
  • [2] Cristiano Bocci and Brian Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1175-1190. MR 2578512, https://doi.org/10.1090/S0002-9939-09-10108-9
  • [3] Karen A. Chandler, Regularity of the powers of an ideal, Comm. Algebra 25 (1997), no. 12, 3773-3776. MR 1481564, https://doi.org/10.1080/00927879708826084
  • [4] G. V. Chudnovsky, Singular points on complex hypersurfaces and multidimensional Schwarz lemma, Seminar on Number Theory, Paris 1979-80, Progr. Math., vol. 12, Birkhäuser, Boston, Mass., 1981, pp. 29-69. MR 633888
  • [5] Harm Derksen and Jessica Sidman, A sharp bound for the Castelnuovo-Mumford regularity of subspace arrangements, Adv. Math. 172 (2002), no. 2, 151-157. MR 1942401, https://doi.org/10.1016/S0001-8708(02)00019-1
  • [6] Marcin Dumnicki, An algorithm to bound the regularity and nonemptiness of linear systems in $ \mathbb{P}^n$, J. Symbolic Comput. 44 (2009), no. 10, 1448-1462. MR 2543429, https://doi.org/10.1016/j.jsc.2009.04.005
  • [7] Marcin Dumnicki, Symbolic powers of ideals of generic points in $ \mathbb{P}^3$, J. Pure Appl. Algebra 216 (2012), no. 6, 1410-1417. MR 2890510, https://doi.org/10.1016/j.jpaa.2011.12.010
  • [8] Marcin Dumnicki, Containments of symbolic powers of ideals of generic points in $ \mathbb{P}^3$, Proc. Amer. Math. Soc. 143 (2015), no. 2, 513-530. MR 3283641, https://doi.org/10.1090/S0002-9939-2014-12273-8
  • [9] Anthony V. Geramita, Alessandro Gimigliano, and Yves Pitteloud, Graded Betti numbers of some embedded rational $ n$-folds, Math. Ann. 301 (1995), no. 2, 363-380. MR 1314592, https://doi.org/10.1007/BF01446634
  • [10] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241-252. MR 1826369, https://doi.org/10.1007/s002220100121
  • [11] Hélène Esnault and Eckart Viehweg, Sur une minoration du degré d'hypersurfaces s'annulant en certains points, Math. Ann. 263 (1983), no. 1, 75-86 (French). MR 697332, https://doi.org/10.1007/BF01457085
  • [12] Laurent Evain, On the postulation of $ s^d$ fat points in $ \mathbb{P}^d$, J. Algebra 285 (2005), no. 2, 516-530. MR 2125451, https://doi.org/10.1016/j.jalgebra.2004.09.034
  • [13] Brian Harbourne and Craig Huneke, Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. 28A (2013), 247-266. MR 3115195
  • [14] Melvin Hochster and Craig Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), no. 2, 349-369. MR 1881923, https://doi.org/10.1007/s002220100176
  • [15] Masayoshi Nagata, On the $ 14$-th problem of Hilbert, Amer. J. Math. 81 (1959), 766-772. MR 0105409
  • [16] H. Skoda, Estimations $ L^{2}$ pour l'opérateur $ \overline \partial $ et applications arithmétiques, Journées sur les Fonctions Analytiques (Toulouse, 1976) Springer, Berlin, 1977, pp. 314-323. Lecture Notes in Math., Vol. 578 (French). MR 0460723
  • [17] Michel Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables. II, Séminaire Pierre Lelong (Analyse) année 1975/76, Springer, Berlin, 1977, pp. 108-135. Lecture Notes in Math., Vol. 578 (French). MR 0453659

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13A15, 13A02

Retrieve articles in all journals with MSC (2010): 13A15, 13A02


Additional Information

Marcin Dumnicki
Affiliation: Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Email: Marcin.Dumnicki@im.uj.edu.pl

Halszka Tutaj-Gasińska
Affiliation: Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Email: Halszka.Tutaj-Gasinska@uj.edu.pl

DOI: https://doi.org/10.1090/proc/13582
Keywords: Symbolic powers, fat points
Received by editor(s): March 13, 2016
Received by editor(s) in revised form: April 27, 2016, and September 27, 2016
Published electronically: February 22, 2017
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society