Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


A simplified Kronecker rule for one hook shape

Author: Ricky Ini Liu
Journal: Proc. Amer. Math. Soc. 145 (2017), 3657-3664
MSC (2010): Primary 05E10; Secondary 20C30
Published electronically: May 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently Blasiak has given a combinatorial rule for the Kronecker coefficient $ g_{\lambda \mu \nu }$ when $ \mu $ is a hook shape by defining a set of colored Yamanouchi tableaux with cardinality $ g_{\lambda \mu \nu }$ in terms of a process called conversion. We give a characterization of colored Yamanouchi tableaux that does not rely on conversion, which leads to a simpler formulation and proof of the Kronecker rule for one hook shape.

References [Enhancements On Off] (What's this?)

  • [1] C. M. Ballantine and R. C. Orellana, On the Kronecker product $ s_{(n-p,p)}\ast s_\lambda $, Electron. J. Combin. 12 (2005), Research Paper 28, 26. MR 2156682
  • [2] Georgia Benkart, Frank Sottile, and Jeffrey Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996), no. 1, 11-43. MR 1405988,
  • [3] Jonah Blasiak, Kronecker coefficients for one hook shape, to appear in Sem. Lothar. Combin.
  • [4] Jonah Blasiak, Ketan D. Mulmuley, and Milind Sohoni, Geometric complexity theory IV: nonstandard quantum group for the Kronecker problem, Mem. Amer. Math. Soc. 235 (2015), no. 1109, x+160. MR 3338303,
  • [5] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas, Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract), 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009, pp. 241-252. MR 2721516
  • [6] Mark D. Haiman, On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Ser. A 50 (1989), no. 2, 196-225. MR 989194,
  • [7] A. Lascoux, Produit de Kronecker des représentations du groupe symétrique, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), Lecture Notes in Math., vol. 795, Springer, Berlin, 1980, pp. 319-329. MR 582085 (82b:20016)
  • [8] Jeffrey B. Remmel, A formula for the Kronecker products of Schur functions of hook shapes, J. Algebra 120 (1989), no. 1, 100-118. MR 977863,
  • [9] Jeffrey B. Remmel and Tamsen Whitehead, On the Kronecker product of Schur functions of two row shapes, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), no. 5, 649-683. MR 1315363
  • [10] Mercedes H. Rosas, The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, J. Algebraic Combin. 14 (2001), no. 2, 153-173. MR 1867232,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05E10, 20C30

Retrieve articles in all journals with MSC (2010): 05E10, 20C30

Additional Information

Ricky Ini Liu
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695

Received by editor(s): August 3, 2015
Published electronically: May 24, 2017
Communicated by: Harm Derksen
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society