Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On power-subadditive positive operators on the $ L_p$ spaces $ (1<p<\infty)$


Author: Jean-Claude Lootgieter
Journal: Proc. Amer. Math. Soc. 145 (2017), 4299-4311
MSC (2010): Primary 47A35
DOI: https://doi.org/10.1090/proc/13124
Published electronically: June 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we first give a counterexample to the statement appearing in a note of A. Brunel in 2002 concerning the study of positive operators on $ L_p$ spaces $ (1<p<\infty )$ whose sequence of powers is subadditive. We then give some properties of these operators when they are power-bounded.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu, A pointwise ergodic theorem in $ L_{p}$-spaces, Canad. J. Math. 27 (1975), no. 5, 1075-1082. MR 0396901
  • [2] Antoine Brunel, Théorème ergodique pour les opérateurs positifs à moyennes bornées sur les espaces $ L_p\;(1<p<\infty )$, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 195-207 (French, with English summary). MR 1176617, https://doi.org/10.1017/S0143385700006684
  • [3] Antoine Brunel, Le théorème ergodique pour les opérateurs positifs sur les espaces $ L_p\ (1<p<\infty )$ revisité, C. R. Math. Acad. Sci. Paris 334 (2002), no. 3, 205-207 (French, with English and French summaries). MR 1891059, https://doi.org/10.1016/S1631-073X(02)02246-X
  • [4] Antoine Brunel and Richard Émilion, Sur les opérateurs positifs à moyennes bornées, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 6, 103-106 (French, with English summary). MR 741070, https://doi.org/10.1017/S0143385700006684
  • [5] Yves Derriennic and Michael Lin, On invariant measures and ergodic theorems for positive operators, J. Functional Analysis 13 (1973), 252-267. MR 0355001
  • [6] R. Émilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), no. 1, 1-14. MR 779737, https://doi.org/10.1016/0022-1236(85)90037-0
  • [7] Nick Dungey, Subordinated discrete semigroups of operators, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1721-1741. MR 2746662, https://doi.org/10.1090/S0002-9947-2010-05094-9
  • [8] Markus Haase, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, vol. 169, Birkhäuser Verlag, Basel, 2006. MR 2244037
  • [9] A. Ionescu Tulcea, Ergodic properties of isometries in $ L^{p}$ spaces, $ 1<p<\infty $, Bull. Amer. Math. Soc. 70 (1964), 366-371. MR 0206207
  • [10] Charn Huen Kan, Ergodic properties of Lamperti operators, Canad. J. Math. 30 (1978), no. 6, 1206-1214. MR 511557, https://doi.org/10.4153/CJM-1978-100-x
  • [11] Ulrich Krengel, Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411
  • [12] Christian Le Merdy and Quanhua Xu, Strong $ q$-variation inequalities for analytic semigroups, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2069-2097 (2013) (English, with English and French summaries). MR 3060752, https://doi.org/10.5802/aif.2743
  • [13] F. J. Martín-Reyes and A. De la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Amer. Math. Soc. 104 (1988), no. 1, 69-75. MR 958045, https://doi.org/10.2307/2047463
  • [14] R. Sato, On Brunel's proof of a dominated ergodic theorem for positive linear operators on $ L_p$ $ (1< p<\infty )$ (quoted by A. Brunel in [3], p. 205).
  • [15] Alberto de la Torre, A simple proof of the maximal ergodic theorem, Canad. J. Math. 28 (1976), no. 5, 1073-1075. MR 0417819

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A35

Retrieve articles in all journals with MSC (2010): 47A35


Additional Information

Jean-Claude Lootgieter
Affiliation: Université Pierre et Marie Curie, 3 place de l’Escadrille Normandie Niemen 75013, Paris, France
Email: jean-claude.lootgieter@upmc.fr

DOI: https://doi.org/10.1090/proc/13124
Keywords: Positive linear operator with subadditive powers, dominated ergodic estimate, pointwise ergodic theorem
Received by editor(s): December 2, 2013
Received by editor(s) in revised form: July 8, 2015, October 23, 2015, January 7, 2016, and January 21, 2016
Published electronically: June 16, 2017
Communicated by: Nimish A. Shaw
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society