Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On local smoothing problems and Stein's maximal spherical means


Authors: Changxing Miao, Jianwei Yang and Jiqiang Zheng
Journal: Proc. Amer. Math. Soc. 145 (2017), 4269-4282
MSC (2010): Primary 42B25, 42B20
DOI: https://doi.org/10.1090/proc/13313
Published electronically: July 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the local smoothing conjecture for wave equations implies certain improvements on Stein's analytic family of maximal spherical means. Some related problems are also discussed.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, On the spherical maximal function in the plane. IHES, 1985.
  • [2] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. MR 874045, https://doi.org/10.1007/BF02792533
  • [3] Jean Bourgain and Ciprian Demeter, The proof of the $ l^2$ decoupling conjecture, Ann. of Math. (2) 182 (2015), no. 1, 351-389. MR 3374964, https://doi.org/10.4007/annals.2015.182.1.9
  • [4] G. Garrigós, W. Schlag, and A. Seeger, Improvements in Wolff's inequality for decompositions of cone multipliers. Unpublished preprint, available online (2008).
  • [5] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
  • [6] A. Iosevich and E. Sawyer, Maximal averages over surfaces, Adv. Math. 132 (1997), no. 1, 46-119. MR 1488239, https://doi.org/10.1006/aima.1997.1678
  • [7] Lawrence Kolasa and Thomas Wolff, On some variants of the Kakeya problem, Pacific J. Math. 190 (1999), no. 1, 111-154. MR 1722768, https://doi.org/10.2140/pjm.1999.190.111
  • [8] Izabella Łaba and Thomas Wolff, A local smoothing estimate in higher dimensions, J. Anal. Math. 88 (2002), 149-171. Dedicated to the memory of Tom Wolff. MR 1956533, https://doi.org/10.1007/BF02786576
  • [9] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207-218. MR 1173929, https://doi.org/10.2307/2946549
  • [10] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65-130. MR 1168960, https://doi.org/10.2307/2152795
  • [11] Wilhelm Schlag, $ L^p\to L^q$ estimates for the circular maximal function, Topics in analysis and its applications, World Sci. Publ., River Edge, NJ, 2000, pp. 1-59. MR 1882550, https://doi.org/10.1142/9789812813305_0001
  • [12] W. Schlag, A generalization of Bourgain's circular maximal theorem, J. Amer. Math. Soc. 10 (1997), no. 1, 103-122. MR 1388870, https://doi.org/10.1090/S0894-0347-97-00217-8
  • [13] Wilhelm Schlag and Christopher D. Sogge, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), no. 1, 1-15. MR 1432805, https://doi.org/10.4310/MRL.1997.v4.n1.a1
  • [14] Christopher D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), no. 2, 349-376. MR 1098614, https://doi.org/10.1007/BF01245080
  • [15] Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579
  • [16] Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174-2175. MR 0420116
  • [17] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • [18] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
  • [19] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
  • [20] T. Wolff, Local smoothing type estimates on $ L^p$ for large $ p$, Geom. Funct. Anal. 10 (2000), no. 5, 1237-1288. MR 1800068, https://doi.org/10.1007/PL00001652

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B25, 42B20

Retrieve articles in all journals with MSC (2010): 42B25, 42B20


Additional Information

Changxing Miao
Affiliation: Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China
Email: miao_changxing@aliyun.com, miao_{}changxing@iapcm.ac.cn

Jianwei Yang
Affiliation: Beijing International Center for Mathematical Research, Peking University, Beijing 100871, People’s Republic of China – and – LAGA(UMR 7539), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, France
Email: geewey_{}young@pku.edu.cn

Jiqiang Zheng
Affiliation: Université de Nice - Sophia Antipolis, Laboratoire J. A. Dieudonné, 06108 Nice Cedex 02, France
Email: zhengjiqiang@gmail.com

DOI: https://doi.org/10.1090/proc/13313
Keywords: Maximal spherical means, local smoothing, wave equation, oscillatory integral
Received by editor(s): June 5, 2014
Published electronically: July 7, 2017
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society