Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reverse isoperimetric inequality in two-dimensional Alexandrov spaces


Author: Alexander A. Borisenko
Journal: Proc. Amer. Math. Soc. 145 (2017), 4465-4471
MSC (2010): Primary 53C45, 52A40
DOI: https://doi.org/10.1090/proc/13541
Published electronically: April 12, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a reverse isoperimetric inequality for domains homeomorphic to a disc with the boundary of curvature bounded below lying in two-dimensional Alexandrov spaces of curvature $ \geqslant c$. We also study the equality case.


References [Enhancements On Off] (What's this?)

  • [1] Wilhelm Blaschke, Kreis und Kugel, Walter de Gruyter & Co., Berlin, 1956 (German). 2te Aufl. MR 0077958
  • [2] Felix Bernstein, Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene, Math. Ann. 60 (1905), no. 1, 117-136 (German). MR 1511289, https://doi.org/10.1007/BF01447496
  • [3] A. D. Aleksandrov, An isoperimetric problem, Doklady Akad. Nauk SSSR (N.S.) 50 (1945), 31-34 (Russian). MR 0052136
  • [4] V. K. Ionin, Isoperimetric and certain other inequalities for a manifold of bounded curvature, Sibirsk. Mat. Z. 10 (1969), 329-342 (Russian). MR 0240753
  • [5] A. A. Borisenko and K. D. Drach, Isoperimetric inequality for curves with curvature bounded below, Math. Notes 95 (2014), no. 5-6, 590-598. Translation of Mat. Zametki 95 (2014), no. 5, 656-665. MR 3306202, https://doi.org/10.1134/S0001434614050034
  • [6] Alexander Borisenko and Kostiantyn Drach, Extreme properties of curves with bounded curvature on a sphere, J. Dyn. Control Syst. 21 (2015), no. 3, 311-327. MR 3348570, https://doi.org/10.1007/s10883-014-9221-z
  • [7] K. Drach, About the isoperimetric property of $ \lambda $-convex lunes on the Lobachevsky plane, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2014, 11 (2014), 11-15 (in Russian; English version arXiv:1402.2688 [math.DG]).
  • [8] Yoel Groman and Jake P. Solomon, A reverse isoperimetric inequality for $ J$-holomorphic curves, Geom. Funct. Anal. 24 (2014), no. 5, 1448-1515. MR 3261632, https://doi.org/10.1007/s00039-014-0295-2
  • [9] A. D. Alexandrov, A. D. Alexandrov selected works. Part II, Intrinsic geometry of convex surfaces, edited by S. S. Kutateladze, translated from the Russian by S. Vakhrameyev. Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2193913
  • [10] Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
  • [11] A. V. Pogorelov, Extrinsic geometry of convex surfaces, translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35. American Mathematical Society, Providence, R.I., 1973. MR 0346714
  • [12] A. D. Alexandrov, Convex polyhedra, translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, with comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor and Yu. A. Volkov. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. MR 2127379
  • [13] A. D. Milka, Unique determinacy of general closed convex surfaces in Lobačevskiĭ space, Ukrain. Geom. Sb. 23 (1980), 99-107, iii (Russian). MR 614279
  • [14] William H. Meeks III and Shing Tung Yau, The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn's lemma, Topology 21 (1982), no. 4, 409-442. MR 670745, https://doi.org/10.1016/0040-9383(82)90021-0
  • [15] V. A. Zalgaller, On a class of curves with curvature of bounded variation on a convex surface, Mat. Sbornik N.S. 30(72) (1952), 59-72 (Russian). MR 0048833
  • [16] A. A. Borisenko, Complete $ l$-dimensional surfaces of non-positive extrinsic curvature in a Riemannian space, Mat. Sb. (N.S.) 104(146) (1977), no. 4, 559-576, 662-663 (Russian). MR 0470905

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C45, 52A40

Retrieve articles in all journals with MSC (2010): 53C45, 52A40


Additional Information

Alexander A. Borisenko
Affiliation: B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Avenue, Kharkiv, 61103, Ukraine
Email: aborisenk@gmail.com

DOI: https://doi.org/10.1090/proc/13541
Keywords: Alexandrov metric spaces, isoperimetric inequality, $\lambda$-convex curve
Received by editor(s): July 11, 2016
Received by editor(s) in revised form: September 22, 2016, and October 19, 2016
Published electronically: April 12, 2017
Communicated by: Lei Ni
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society