Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Self-similar functions, fractals and algebraic genericity


Authors: D. Cariello, V. V. Fávaro and J. B. Seoane-Sepúlveda
Journal: Proc. Amer. Math. Soc. 145 (2017), 4151-4159
MSC (2010): Primary 15A03, 26A15
DOI: https://doi.org/10.1090/proc/13552
Published electronically: April 4, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the class of everywhere like functions, which helps us to recover some known classes (such as that of everywhere surjective ones). We also study the algebraic genericity of this new class together with the class of fractal functions.


References [Enhancements On Off] (What's this?)

  • [1] N. Albuquerque, L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Peano curves on topological vector spaces, Linear Algebra Appl. 460 (2014), 81-96. MR 3250532, https://doi.org/10.1016/j.laa.2014.07.029
  • [2] Richard M. Aron, Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. MR 3445906
  • [3] Richard M. Aron, José A. Conejero, Alfredo Peris, and Juan B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 3, 571-575. MR 2731374
  • [4] Richard Aron, V. I. Gurariy, and J. B. Seoane, Lineability and spaceability of sets of functions on $ \mathbb{R}$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803 (electronic). MR 2113929, https://doi.org/10.1090/S0002-9939-04-07533-1
  • [5] Richard M. Aron and Juan B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on $ \mathbb{C}$, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31. MR 2327324
  • [6] F. Bastin, J. A. Conejero, C. Esser, and J. B. Seoane-Sepúlveda, Algebrability and nowhere Gevrey differentiability, Israel J. Math. 205 (2015), no. 1, 127-143. MR 3314585, https://doi.org/10.1007/s11856-014-1104-1
  • [7] Luis Bernal-González and Manuel Ordóñez Cabrera, Lineability criteria, with applications, J. Funct. Anal. 266 (2014), no. 6, 3997-4025. MR 3165251, https://doi.org/10.1016/j.jfa.2013.11.014
  • [8] Luis Bernal-González, Daniel Pellegrino, and Juan B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71-130. MR 3119823, https://doi.org/10.1090/S0273-0979-2013-01421-6
  • [9] F. J. Bertoloto, G. Botelho, V. V. Fávaro, and A. M. Jatobá, Hypercyclicity of convolution operators on spaces of entire functions, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 4, 1263-1283 (English, with English and French summaries). MR 3137355, https://doi.org/10.5802/aif.2803
  • [10] Daniel Cariello and Juan B. Seoane-Sepúlveda, Basic sequences and spaceability in $ \ell _p$ spaces, J. Funct. Anal. 266 (2014), no. 6, 3797-3814. MR 3165243, https://doi.org/10.1016/j.jfa.2013.12.011
  • [11] Krzysztof Chris Ciesielski, José L. Gámez-Merino, Daniel Pellegrino, and Juan B. Seoane-Sepúlveda, Lineability, spaceability, and additivity cardinals for Darboux-like functions, Linear Algebra Appl. 440 (2014), 307-317. MR 3134273, https://doi.org/10.1016/j.laa.2013.10.033
  • [12] K. C. Ciesielski, J. L. Gámez-Merino, L. Mazza, and J. B. Seoane-Sepúlveda, Cardinal coefficients related to surjectivity, Darboux, and Sierpiński-Zygmund maps, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1041-1052. MR 3589304, https://doi.org/10.1090/proc/13294
  • [13] J.A. Conejero, J.B. Seoane-Sepúlveda, and P. Sevilla-Peris, Isomorphic copies of $ \ell _1$ for $ m$-homogeneous non-analytic Bohnenblust-Hille polynomials, Math. Nachr. (in press).
  • [14] Per H. Enflo, Vladimir I. Gurariy, and Juan B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces, Trans. Amer. Math. Soc. 366 (2014), no. 2, 611-625. MR 3130310, https://doi.org/10.1090/S0002-9947-2013-05747-9
  • [15] Vladimir P. Fonf and Clemente Zanco, Almost overcomplete and almost overtotal sequences in Banach spaces, J. Math. Anal. Appl. 420 (2014), no. 1, 94-101. MR 3229811, https://doi.org/10.1016/j.jmaa.2014.05.045
  • [16] José L. Gámez-Merino, Gustavo A. Muñoz-Fernández, Víctor M. Sánchez, and Juan B. Seoane-Sepúlveda, Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3863-3876. MR 2679609, https://doi.org/10.1090/S0002-9939-2010-10420-3
  • [17] José L. Gámez, Gustavo A. Muñoz-Fernández, and Juan B. Seoane-Sepúlveda, Lineability and additivity in $ \Bbb R^{\Bbb R}$, J. Math. Anal. Appl. 369 (2010), no. 1, 265-272. MR 2643865, https://doi.org/10.1016/j.jmaa.2010.03.036
  • [18] José L. Gámez-Merino and Juan B. Seoane-Sepúlveda, An undecidable case of lineability in $ \mathbb{R}^{\mathbb{R}}$, J. Math. Anal. Appl. 401 (2013), no. 2, 959-962. MR 3018041, https://doi.org/10.1016/j.jmaa.2012.10.067
  • [19] Bernard R. Gelbaum and John M. H. Olmsted, Counterexamples in analysis, Dover Publications, Inc., Mineola, NY, 2003. Corrected reprint of the second (1965) edition. MR 1996162
  • [20] V. I. Gurariĭ, Linear spaces composed of everywhere nondifferentiable functions, C. R. Acad. Bulgare Sci. 44 (1991), no. 5, 13-16 (Russian). MR 1127022
  • [21] F. B. Jones, Connected and disconnected plane sets and the functional equation $ f(x)+f(y)=f(x+y)$, Bull. Amer. Math. Soc. 48 (1942), 115-120. MR 0005906
  • [22] Péter Komjáth and Vilmos Totik, Problems and theorems in classical set theory, Problem Books in Mathematics, Springer, New York, 2006. MR 2220838
  • [23] Henri Leon Lebesgue, Leçons sur l'intégration et la recherche des fonctions primitives professées au Collège de France, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009 (French). Reprint of the 1904 original. MR 2857993
  • [24] J. Lukeš, G. A. Muñoz-Fernández, P. Petráček, and J. B. Seoane-Sepúlveda, Locally recurrent functions, density topologies and algebraic genericity, J. Math. Anal. Appl. 443 (2016), no. 2, 1247-1259. MR 3514345, https://doi.org/10.1016/j.jmaa.2016.06.009
  • [25] Juan B. Seoane, Chaos and lineability of pathological phenomena in analysis, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-Kent State University, 2006. MR 2709064

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A03, 26A15

Retrieve articles in all journals with MSC (2010): 15A03, 26A15


Additional Information

D. Cariello
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, Madrid, 28040, Spain — and — Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902, Uberlândia, Brazil
Email: dcariello@ufu.br

V. V. Fávaro
Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902 Uberlândia, Brazil
Email: vvfavaro@gmail.com

J. B. Seoane-Sepúlveda
Affiliation: Departamento de Análisis Matemático, Instituto de Matemática Interdisciplinar, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad Complutense de Madrid, Madrid, 28040, Spain
Email: jseoane@ucm.es

DOI: https://doi.org/10.1090/proc/13552
Keywords: Lineability, spaceability, everywhere surjective function, fractal, Darboux.
Received by editor(s): August 30, 2016
Received by editor(s) in revised form: October 24, 2016
Published electronically: April 4, 2017
Additional Notes: The first author was supported by CNPq-Brazil Grant 245277/2012-9
The second author was supported by FAPEMIG Grant PPM-00086-14 and CNPq Grants 482515/2013-9, 307517/2014-4
The third author was supported by MTM2015-65825-P
Communicated by: Ken Ono
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society