Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Torsion subgroups of elliptic curves over quintic and sextic number fields


Authors: Maarten Derickx and Andrew V. Sutherland
Journal: Proc. Amer. Math. Soc. 145 (2017), 4233-4245
MSC (2010): Primary 11G05; Secondary 11G18, 14G35, 14H51
DOI: https://doi.org/10.1090/proc/13605
Published electronically: April 12, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Phi ^\infty (d)$ denote the set of finite abelian groups that occur infinitely often as the torsion subgroup of an elliptic curve over a number field of degree $ d$. The sets $ \Phi ^\infty (d)$ are known for $ d\le 4$. In this article we determine $ \Phi ^\infty (5)$ and $ \Phi ^\infty (6)$.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices no. 20 (1996), 1005-1011. MR 1422373
  • [2] A. O. L. Atkin and Wen Ch'ing Winnie Li, Twists of newforms and pseudo-eigenvalues of $ W$-operators, Invent. Math. 48 (1978), no. 3, 221-243. MR 508986
  • [3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478
  • [4] Brian Conrad, Bas Edixhoven, and William Stein, $ J_1(p)$ has connected fibers, Doc. Math. 8 (2003), 331-408. MR 2029169
  • [5] P. Deligne and M. Rapoport, Modular functions of one variable, II, Lecture Notes in Math., Vol. 349, 1973, pp. 143-316 (French). MR 0337993
  • [6] Maarten Derickx and Mark van Hoeij, Gonality of the modular curve $ X_1(N)$, J. Algebra 417 (2014), 52-71. MR 3244637
  • [7] Maarten Derickx and Mark van Hoeij, data related to [6], available at www.math.fsu.edu/~hoeij/files/X1N, 2013.
  • [8] Maarten Derickx, Sheldon Kamienny, and Barry Mazur, Rational families of $ 17$-torsion points of elliptic curves over number fields, Contemporary Mathematics, AMS, to appear.
  • [9] Maarten Derickx and Andrew V. Sutherland, GitHub repository related to Torsion subgroups of elliptic curves over quintic and sextic number fields, available at https://github.com/koffie/mdmagma/, 2016.
  • [10] Maarten Derickx and Andrew V. Sutherland, Explicit models of $ X_1(m,mn)$, available at http://math.mit.edu/~drew/X1mn.html, 2016.
  • [11] Gerhard Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79-83. MR 1264340
  • [12] Gerd Faltings, The general case of S. Lang's conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 175-182. MR 1307396
  • [13] Sonal Jain, Points of low height on elliptic surfaces with torsion, LMS J. Comput. Math. 13 (2010), 370-387. MR 2685131
  • [14] Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 273, 579-591. MR 2728995
  • [15] Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1-12. MR 2254548
  • [16] Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291-301. MR 2069117
  • [17] S. Kamienny, Torsion points on elliptic curves and $ q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221-229. MR 1172689
  • [18] Kazuya Kato, $ p$-adic Hodge theory and values of zeta functions of modular forms, Cohomologies $ p$-adiques et applications arithmétiques. III, Astérisque No. 295 (2004), ix, 117-290 (English, with English and French summaries). MR 2104361
  • [19] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149. MR 931956
  • [20] Henry H. Kim, Functoriality for the exterior square of $ {\rm GL}_4$ and the symmetric fourth of $ {\rm GL}_2$, with appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak, J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. MR 1937203
  • [21] V. A. Kolyvagin and D. Yu. Logachëv, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171-196 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1229-1253. MR 1036843
  • [22] Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193-237. MR 0434947
  • [23] Abhinav Kumar and Tetsuji Shioda, Multiplicative excellent families of elliptic surfaces of type $ E_7$ or $ E_8$, Algebra Number Theory 7 (2013), no. 7, 1613-1641. MR 3117502
  • [24] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186 (1978). MR 488287
  • [25] Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437-449 (French). MR 1369424
  • [26] Markus A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), no. 174, 637-658. MR 829635
  • [27] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
  • [28] Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion, Math. Comp. 81 (2012), no. 278, 1131-1147. MR 2869053
  • [29] André Weil, L'arithmétique sur les courbes algébriques, Acta Math. 52 (1929), no. 1, 281-315 (French). MR 1555278

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G05, 11G18, 14G35, 14H51

Retrieve articles in all journals with MSC (2010): 11G05, 11G18, 14G35, 14H51


Additional Information

Maarten Derickx
Affiliation: Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands

Andrew V. Sutherland
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachsuetts Avenue, Cambridge, Massachusetts 02139

DOI: https://doi.org/10.1090/proc/13605
Received by editor(s): September 16, 2016
Received by editor(s) in revised form: November 21, 2016
Published electronically: April 12, 2017
Additional Notes: The second author was supported by NSF grant DMS-1522526.
Communicated by: Romyar T. Sharifi
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society