Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Dirichlet approximation and universal Dirichlet series

Authors: Richard M. Aron, Frédéric Bayart, Paul M. Gauthier, Manuel Maestre and Vassili Nestoridis
Journal: Proc. Amer. Math. Soc. 145 (2017), 4449-4464
MSC (2010): Primary 30K10; Secondary 46G20, 30E10
Published electronically: June 8, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the uniform limits of Dirichlet polynomials on a right half plane. In the Dirichlet setting, we find approximation results, with respect to the Euclidean distance and to the chordal one as well, analogous to classical results of Runge, Mergelyan and Vituškin. We also strengthen the notion of universal Dirichlet series.

References [Enhancements On Off] (What's this?)

  • [1] R. M. Aron, F. Bayart, P. M. Gauthier, M. Maestre, and V. Nestoridis, Dirichlet approximation and universal Dirichlet series, Oberwolfach Preprint (OWP) 2016-12 ISSN 1864-7596.
  • [2] R. M. Aron, B. J. Cole, and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. MR 1096902
  • [3] R. M. Aron, B. J. Cole, and T. W. Gamelin, Weak-star continuous analytic functions, Canad. J. Math. 47 (1995), no. 4, 673-683. MR 1346158
  • [4] Bhaskar Bagchi, A joint universality theorem for Dirichlet $ L$-functions, Math. Z. 181 (1982), no. 3, 319-334. MR 678888
  • [5] Frédéric Bayart, Topological and algebraic genericity of divergence and universality, Studia Math. 167 (2005), no. 2, 161-181. MR 2134382
  • [6] Frédéric Bayart, Andreas Defant, Leonhard Frerick, Manuel Maestre, and Pablo Sevilla-Peris, Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, Math. Ann. 368 (2017), no. 1-2, 837-876. MR 3651590,
  • [7] F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, and C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 417-463. MR 2396846
  • [8] Frédéric Bayart and Étienne Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179, Cambridge University Press, Cambridge, 2009. MR 2533318
  • [9] W. Bogdanowicz, On the weak continuity of the polynomial functionals defined on the space $ c_0$, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 243-246, XXI (Russian, with English summary). MR 0088692
  • [10] Harold P. Boas and The football player and the infinite series, Notices Amer. Math. Soc. 44 (1997), no. 11, 1430-1435. MR 1488569
  • [11] H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen $ \sum \frac {a_n}{n^s},$ Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., (1913), 441-488.
  • [12] G. Costakis, V. Nestoridis, and I. Papadoperakis, Universal Laurent series, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 3, 571-583. MR 2171185
  • [13] O. Demanze and A. Mouze, Growth of coefficients of universal Dirichlet series, Ann. Polon. Math. 91 (2007), no. 1, 11-23. MR 2304288
  • [14] Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327
  • [15] M. Fragoulopoulou, V. Nestoridis, and I. Papadoperakis, Some results on spherical approximation, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1171-1180. MR 3138485
  • [16] Stephen J. Gardiner and Myrto Manolaki, Boundary behaviour of Dirichlet series with applications to universal series, Bull. Lond. Math. Soc. 48 (2016), no. 5, 735-744. MR 3556357
  • [17] Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in $ L^2(0,1)$, Duke Math. J. 86 (1997), no. 1, 1-37. MR 1427844
  • [18] K. Makridis and V. Nestoridis, Sets of uniqueness for uniform limits of polynomials in several complex variables, J. Math. Anal. Appl. 432 (2015), no. 2, 994-1004. MR 3378405
  • [19] A. Mouze, Universality and summability of Dirichlet series, Complex Var. Elliptic Equ. 54 (2009), no. 1, 57-70. MR 2492117
  • [20] Vassili Nestoridis and Chris Papadimitropoulos, Abstract theory of universal series and an application to Dirichlet series, C. R. Math. Acad. Sci. Paris 341 (2005), no. 9, 539-543 (English, with English and French summaries). MR 2181390
  • [21] V. Nestoridis and C. Papadoperakis, A remark on the two extensions of the disc algebra and Mergelyan's theorem, arxiv:1104.0833.
  • [22] H. Queffélec and M. Queffélec, Diophantine approximation and Dirichlet series, HRI lecture notes, vol. 2, New Delhi, India : Hindustan Book Agency, 2013.
  • [23] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • [24] A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141-199 (Russian). MR 0229838

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30K10, 46G20, 30E10

Retrieve articles in all journals with MSC (2010): 30K10, 46G20, 30E10

Additional Information

Richard M. Aron
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242

Frédéric Bayart
Affiliation: Laboratoire de Mathématiques, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France

Paul M. Gauthier
Affiliation: Département de mathématiques et de statistique, Université de Montréal, Montréal, Quebec, Canada H3C3J7

Manuel Maestre
Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, 46100 Burjasot (Valencia), Spain

Vassili Nestoridis
Affiliation: Department of Mathematics, University of Athens, 157 84 Panepistemiopolis, Athens, Greece

Keywords: Universal series, Runge theorem
Received by editor(s): August 28, 2016
Received by editor(s) in revised form: November 22, 2016
Published electronically: June 8, 2017
Additional Notes: Partially supported by the “SQuaREs” program at the American Institute of Mathematics, Palo Alto and the “Research in Pairs” program at the Mathematisches Forshungsinstitut, Oberwolfach.
The first and fourth authors were supported by MINECO and FEDER MTM2014-57838-C2-2-P and Prometeo II/2013/013. The third author was supported by NSERC and Entente France-Québec.
Communicated by: Franc Forstneric
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society