Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Log Fano structures and Cox rings of blow-ups of products of projective spaces

Authors: John Lesieutre and Jinhyung Park
Journal: Proc. Amer. Math. Soc. 145 (2017), 4201-4209
MSC (2010): Primary 14J45; Secondary 14E30, 14C20
Published electronically: April 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is twofold. First, we determine which blow-ups of products of projective spaces at general points are varieties of Fano type, and give boundary divisors making these spaces log Fano pairs. Second, we describe generators of the Cox rings of some cases.

References [Enhancements On Off] (What's this?)

  • [AM] Carolina Araujo and Alex Massarenti, Explicit log Fano structures on blow-ups of projective spaces, Proc. Lond. Math. Soc. (3) 113 (2016), no. 4, 445-473. MR 3556488,
  • [BP] Victor V. Batyrev and Oleg N. Popov, The Cox ring of a del Pezzo surface, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 85-103. MR 2029863,
  • [BH] Florian Berchtold and Jürgen Hausen, Cox rings and combinatorics, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1205-1252 (electronic). MR 2262848,
  • [BDP] Maria Chiara Brambilla, Olivia Dumitrescu, and Elisa Postinghel, On the effective cone of $ \mathbb{P}^n$ blown-up at $ n+3$ points, Exp. Math. 25 (2016), no. 4, 452-465. MR 3499709,
  • [BCHM] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468. MR 2601039,
  • [CDBDGP] S. Cacciola, M. Donten-Bury, O. Dumitrescu, A. Lo Giudice, and J. Park, Cones of divisors of blow-ups of projective spaces, Matematiche (Catania) 66 (2011), no. 2, 153-187. MR 2862173
  • [CG] Paolo Cascini and Yoshinori Gongyo, On the anti-canonical ring and varieties of Fano type, Saitama Math. J. 30 (2013), 27-38 (2013). MR 3203718
  • [CP] Sung Rak Choi and Jinhyung Park, Potentially non-klt locus and its applications, Math. Ann. 366 (2016), no. 1-2, 141-166. MR 3552236,
  • [CT] Ana-Maria Castravet and Jenia Tevelev, Hilbert's 14th problem and Cox rings, Compos. Math. 142 (2006), no. 6, 1479-1498. MR 2278756,
  • [DO] Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
  • [DPU] O. Dumitrescu, E. Postinghel, and S. Urbinati, Cones of effective divisors on the blown-up $ \mathbb{P}^3$ in general lines, preprint, arXiv:1512.09005.
  • [EKW] E. Javier Elizondo, Kazuhiko Kurano, and Kei-ichi Watanabe, The total coordinate ring of a normal projective variety, J. Algebra 276 (2004), no. 2, 625-637. MR 2058459,
  • [GOST] Yoshinori Gongyo, Shinnosuke Okawa, Akiyoshi Sannai, and Shunsuke Takagi, Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom. 24 (2015), no. 1, 159-182. MR 3275656,
  • [G] Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125-171. MR 739785
  • [HK] Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. MR 1786494,
  • [KM] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
  • [L] Robert Lazarsfeld, Positivity in algebraic geometry. I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471
  • [M1] S. Mukai, Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group, RIMS Preprint no. 1343, Kyoto, 2001.
  • [M2] Shigeru Mukai, Geometric realization of $ T$-shaped root systems and counterexamples to Hilbert's fourteenth problem, Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin, 2004, pp. 123-129. MR 2090672,
  • [M3] S. Mukai, Finite generation of the Nagata invariant rings in A-D-E cases, RIMS Preprint no. 1502, Kyoto, 2005.
  • [SV] Bernd Sturmfels and Mauricio Velasco, Blow-ups of $ \mathbb{P}^{n-3}$ at $ n$ points and spinor varieties, J. Commut. Algebra 2 (2010), no. 2, 223-244. MR 2647477,
  • [TVAV] Damiano Testa, Anthony Várilly-Alvarado, and Mauricio Velasco, Cox rings of degree one del Pezzo surfaces, Algebra Number Theory 3 (2009), no. 7, 729-761. MR 2579393,
  • [T] Burt Totaro, Algebraic surfaces and hyperbolic geometry, Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 405-426. MR 2931877

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14J45, 14E30, 14C20

Retrieve articles in all journals with MSC (2010): 14J45, 14E30, 14C20

Additional Information

John Lesieutre
Affiliation: Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607

Jinhyung Park
Affiliation: School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemungu, Seoul 02455, Republic of Korea

Keywords: log Fano variety, Cox ring, Mori dream space, blow-up of a product of projective spaces
Received by editor(s): May 4, 2016
Received by editor(s) in revised form: November 3, 2016
Published electronically: April 7, 2017
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society