Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Monotonicity of zeros of Jacobi-Angelesco polynomials


Author: Eliel J. C. dos Santos
Journal: Proc. Amer. Math. Soc. 145 (2017), 4741-4750
MSC (2010): Primary 33C45, 26C10
DOI: https://doi.org/10.1090/proc/13319
Published electronically: August 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the monotonic behaviour of the zeros of the multiple Jacobi-Angelesco orthogonal polynomials, in the diagonal case, with respect to the parameters $ \alpha ,\beta $ and $ \gamma $. We prove that the zeros are monotonic functions of $ \alpha $ and $ \gamma $ and consider some special cases of how the zeros depend on $ \beta $, especially in the presence of symmetry. As a consequence we obtain results about monotonicity of zeros of Jacobi-Laguerre and Laguerre-Hermite multiple orthogonal polynomials too.


References [Enhancements On Off] (What's this?)

  • [1] Dimitar K. Dimitrov, On a conjecture concerning monotonicity of zeros of ultraspherical polynomials, J. Approx. Theory 85 (1996), no. 1, 88-97. MR 1382052, https://doi.org/10.1006/jath.1996.0030
  • [2] Geno Nikolov and Rumen Uluchev (eds.), Constructive theory of functions, Prof. Marin Drinov Academic Publishing House, Sofia, 2012. In memory of Borislav Bojanov; Papers from the International Conference held in Sozopol, June 3-10, 2010. MR 3075365
  • [3] Dimitar K. Dimitrov and A. Sri Ranga, Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle, Math. Nachr. 286 (2013), no. 17-18, 1778-1791. MR 3145170, https://doi.org/10.1002/mana.201200181
  • [4] Dimitar K. Dimitrov and Romildo O. Rodrigues, On the behaviour of zeros of Jacobi polynomials, J. Approx. Theory 116 (2002), no. 2, 224-239. MR 1911080, https://doi.org/10.1006/jath.2002.3671
  • [5] Árpád Elbert and Andrea Laforgia, Upper bounds for the zeros of ultraspherical polynomials, J. Approx. Theory 61 (1990), no. 1, 88-97. MR 1047150, https://doi.org/10.1016/0021-9045(90)90025-L
  • [6] Árpád Elbert and Martin E. Muldoon, On the derivative with respect to a parameter of a zero of a Sturm-Liouville function, SIAM J. Math. Anal. 25 (1994), no. 2, 354-364. MR 1266563, https://doi.org/10.1137/S0036141092228878
  • [7] Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
  • [8] Mourad E. H. Ismail, Monotonicity of zeros of orthogonal polynomials, $ q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 177-190. MR 1019851, https://doi.org/10.1007/978-1-4684-0637-5_14
  • [9] Mourand E. H. Ismail and Xin Li, Bound on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 115 (1992), no. 1, 131-140. MR 1079891, https://doi.org/10.2307/2159575
  • [10] Mourad E. H. Ismail and Martin E. Muldoon, A discrete approach to monotonicity of zeros of orthogonal polynomials, Trans. Amer. Math. Soc. 323 (1991), no. 1, 65-78. MR 1014251, https://doi.org/10.2307/2001616
  • [11] André Markoff, Sur les racines de certaines équations, Math. Ann. 27 (1886), no. 2, 177-182 (French). MR 1510373, https://doi.org/10.1007/BF01452056
  • [12] Wladimir Markoff and J. Grossmann, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), no. 2, 213-258 (German). MR 1511855, https://doi.org/10.1007/BF01456902
  • [13] Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735
  • [14] V. N. Sorokin, Simultaneous Padé approximations in the case of finite and infinite intervals, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1984), 45-52 (English, with Russian summary). MR 768656
  • [15] V. N. Sorokin, Generalization of Laguerre polynomials and convergence of simultaneous Padé approximants, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 207-208 (Russian). MR 832428
  • [16] Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517
  • [17] Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317-347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581, https://doi.org/10.1016/S0377-0427(00)00503-3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C45, 26C10

Retrieve articles in all journals with MSC (2010): 33C45, 26C10


Additional Information

Eliel J. C. dos Santos
Affiliation: IMECC, Universidade Estadual de Campinas, Campinas-SP, 13083-859 Brazil
Email: elielubarana@gmail.com

DOI: https://doi.org/10.1090/proc/13319
Keywords: Jacobi-Angelesco polynomials, zeros, monotonicity
Received by editor(s): March 11, 2016
Received by editor(s) in revised form: May 13, 2016
Published electronically: August 1, 2017
Additional Notes: The author’s research was supported by the Brazilian Science Foundation CAPES
Communicated by: Mourad E. H. Ismail
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society