Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Some elementary examples of non-liftable varieties


Authors: Piotr Achinger and Maciej Zdanowicz
Journal: Proc. Amer. Math. Soc. 145 (2017), 4717-4729
MSC (2010): Primary 14D15; Secondary 14G17
DOI: https://doi.org/10.1090/proc/13622
Published electronically: June 5, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present some simple examples of smooth projective varieties in positive characteristic, arising from linear algebra, which do not admit a lifting neither to characteristic zero, nor to the ring of Witt vectors of length $ 2$. Our first construction is the blow-up of the graph of the Frobenius morphism of a homogeneous space. The second example is a blow-up of $ \mathbb{P}^3$ in a `purely characteristic-$ p$' configuration of points and lines.


References [Enhancements On Off] (What's this?)

  • [BHH87] Gottfried Barthel, Friedrich Hirzebruch, and Thomas Höfer, Geradenkonfigurationen und Algebraische Flächen, Aspects of Mathematics, D4, Friedr. Vieweg & Sohn, Braunschweig, 1987 (German). MR 912097
  • [BK86] Spencer Bloch and Kazuya Kato, $ p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107-152. MR 849653
  • [BTLM97] Anders Buch, Jesper F. Thomsen, Niels Lauritzen, and Vikram Mehta, The Frobenius morphism on a toric variety, Tohoku Math. J. (2) 49 (1997), no. 3, 355-366. MR 1464183, https://doi.org/10.2748/tmj/1178225109
  • [CR11] Andre Chatzistamatiou and Kay Rülling, Higher direct images of the structure sheaf in positive characteristic, Algebra Number Theory 5 (2011), no. 6, 693-775. MR 2923726, https://doi.org/10.2140/ant.2011.5.693
  • [CvS09] Sławomir Cynk and Duco van Straten, Small resolutions and non-liftable Calabi-Yau threefolds, Manuscripta Math. 130 (2009), no. 2, 233-249. MR 2545516, https://doi.org/10.1007/s00229-009-0293-0
  • [Dem77] M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179-186. MR 0435092, https://doi.org/10.1007/BF01390108
  • [DI87] Pierre Deligne and Luc Illusie, Relèvements modulo $ p^2$ et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247-270 (French). MR 894379, https://doi.org/10.1007/BF01389078
  • [Eas08] Robert W. Easton, Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2271-2278. MR 2390492, https://doi.org/10.1090/S0002-9939-08-09466-5
  • [FM98] Barbara Fantechi and Marco Manetti, Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), no. 2, 541-576. MR 1617687, https://doi.org/10.1006/jabr.1997.7239
  • [Gor88] Gary Gordon, Algebraic characteristic sets of matroids, J. Combin. Theory Ser. B 44 (1988), no. 1, 64-74. MR 923266, https://doi.org/10.1016/0095-8956(88)90096-2
  • [Gro77] Alexandre Grothendieck, Séminaire de géométrie algébrique du bois-marie 1965-66, cohomologie l-adique et fonctions l, sga5, Springer Lecture Notes, vol. 589, Springer-Verlag, 1977.
  • [Ill71] Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
  • [IR83] Luc Illusie and Michel Raynaud, Les suites spectrales associées au complexe de de Rham-Witt, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 73-212 (French). MR 699058
  • [Lan15] Adrian Langer, Bogomolov's inequality for Higgs sheaves in positive characteristic, Invent. Math. 199 (2015), no. 3, 889-920. MR 3314517, https://doi.org/10.1007/s00222-014-0534-z
  • [Lan16] Adrian Langer, The Bogomolov-Miyaoka-Yau inequality for logarithmic surfaces in positive characteristic, Duke Math. J. 165 (2016), no. 14, 2737-2769. MR 3551772, https://doi.org/10.1215/00127094-3627203
  • [LR97] N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), no. 1, 21-25. MR 1453823, https://doi.org/10.1007/BF02840470
  • [LS14] Christian Liedtke and Matthew Satriano, On the birational nature of lifting, Adv. Math. 254 (2014), 118-137. MR 3161094, https://doi.org/10.1016/j.aim.2013.10.030
  • [Mor79] Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606. MR 554387, https://doi.org/10.2307/1971241
  • [PS89] K. H. Paranjape and V. Srinivas, Self-maps of homogeneous spaces, Invent. Math. 98 (1989), no. 2, 425-444. MR 1016272, https://doi.org/10.1007/BF01388861
  • [Ray78] M. Raynaud, Contre-exemple au ``vanishing theorem'' en caractéristique $ p>0$, C. P. Ramanujam--a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 273-278 (French). MR 541027
  • [RTW13] Bertrand Rémy, Amaury Thuillier, and Annette Werner, Automorphisms of Drinfeld half-spaces over a finite field, Compos. Math. 149 (2013), no. 7, 1211-1224. MR 3078645, https://doi.org/10.1112/S0010437X12000905
  • [Ser61] Jean-Pierre Serre, Exemples de variétés projectives en caractéristique $ p$ non relevables en caractéristique zéro, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 108-109 (French). MR 0132067
  • [Voe00] Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238. MR 1764202
  • [Wah79] Jonathan M. Wahl, Simultaneous resolution and discriminantal loci, Duke Math. J. 46 (1979), no. 2, 341-375. MR 534056

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14D15, 14G17

Retrieve articles in all journals with MSC (2010): 14D15, 14G17


Additional Information

Piotr Achinger
Affiliation: Banach Center, Instytut Matematyczny PAN, Śniadeckich 8, Warsaw, Poland
Email: pachinger@impan.pl

Maciej Zdanowicz
Affiliation: Wydział Matematyki, Informatyki i Mechaniki UW, Banacha 2, Warsaw, Poland
Email: mez@mimuw.edu.pl

DOI: https://doi.org/10.1090/proc/13622
Keywords: mod $p^2$ deformation, Frobenius morphism, characteristic $p$ line configurations
Received by editor(s): July 5, 2016
Received by editor(s) in revised form: December 9, 2016, and December 14, 2016
Published electronically: June 5, 2017
Additional Notes: The first author was supported by NCN OPUS grant number UMO-2015/17/B/ST1/02634
The second author was supported by NCN PRELUDIUM grant number UMO-2014/13/N/ST1/02673. This work was partially supported by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015–2019 Polish MNiSW fund
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society