Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximizers for the singular Trudinger-Moser inequalities in the subcritical cases


Author: Nguyen Lam
Journal: Proc. Amer. Math. Soc. 145 (2017), 4885-4892
MSC (2010): Primary 35A23; Secondary 26D15, 46E35
DOI: https://doi.org/10.1090/proc/13624
Published electronically: June 9, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this note is to study the existence of extremal functions for the singular Trudinger-Moser inequalities in the subcritical cases. More precisely, let $ N\geq 2$, $ ~0<\beta <N,~0<a,~b$ and denote

$\displaystyle TM_{a,b,\beta }\left ( \alpha \right )$ $\displaystyle =\sup _{\left \Vert \nabla u\right \Vert _{N}^{a}+\left \Vert u\r... ...vert ^{\frac {N}{N-1}}\right ) \frac {dx}{\left \vert x\right \vert ^{\beta }},$    
$\displaystyle \phi _{N}(t)$ $\displaystyle =e^{t}- {\displaystyle \sum \limits _{j=0}^{N-2}} \frac {t^{j}}{j!}.$    

Then we will prove in this article that $ TM_{a,b,\beta }\left ( \alpha \right ) $ can be attained if ( $ \alpha <\alpha _{N}=N\omega _{N-1}^{\frac {1}{N-1}}$) or ( $ \alpha =\alpha _{N};$ $ b<N$).

References [Enhancements On Off] (What's this?)

  • [1] Shinji Adachi and Kazunaga Tanaka, Trudinger type inequalities in $ \mathbf {R}^N$ and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051-2057. MR 1646323, https://doi.org/10.1090/S0002-9939-99-05180-1
  • [2] Adimurthi and Yunyan Yang, An interpolation of Hardy inequality and Trundinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN 13 (2010), 2394-2426. MR 2669653
  • [3] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275. MR 768824
  • [4] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ {\bf R}^2$, Comm. Partial Differential Equations 17 (1992), no. 3-4, 407-435. MR 1163431, https://doi.org/10.1080/03605309208820848
  • [5] D. Cassani, F. Sani, and C. Tarsi, Equivalent Moser type inequalities in $ \mathbb{R}^2$ and the zero mass case, J. Funct. Anal. 267 (2014), no. 11, 4236-4263. MR 3269875, https://doi.org/10.1016/j.jfa.2014.09.022
  • [6] João Marcos B. do Ó, $ N$-Laplacian equations in $ \mathbf {R}^N$ with critical growth, Abstr. Appl. Anal. 2 (1997), no. 3-4, 301-315. MR 1704875, https://doi.org/10.1155/S1085337597000419
  • [7] J. M. do Ó, F. Sani, and C. Tarsi, Vanishing-concentration-compactness alternative for the Trudinger-Moser inequality in $ \mathbb{R}^{N}$, Commun. Contemp. Math. (2016) DOI: 10.1142/S021919971650036X
  • [8] Mengxia Dong and Guozhen Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 88, 26. MR 3519595, https://doi.org/10.1007/s00526-016-1014-7
  • [9] Michinori Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in $ \mathbb{R}^N$, Math. Ann. 351 (2011), no. 4, 781-804. MR 2854113, https://doi.org/10.1007/s00208-010-0618-z
  • [10] Michinori Ishiwata, Makoto Nakamura, and Hidemitsu Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 2, 297-314. MR 3181671, https://doi.org/10.1016/j.anihpc.2013.03.004
  • [11] N. Lam, G. Lu, and L. Zhang, Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, Rev. Mat. Iberoam, to appear. arXiv:1504.04858
  • [12] Yuxiang Li and Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^n$, Indiana Univ. Math. J. 57 (2008), no. 1, 451-480. MR 2400264, https://doi.org/10.1512/iumj.2008.57.3137
  • [13] Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal. 219 (2005), no. 2, 340-367. MR 2109256, https://doi.org/10.1016/j.jfa.2004.06.013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35A23, 26D15, 46E35

Retrieve articles in all journals with MSC (2010): 35A23, 26D15, 46E35


Additional Information

Nguyen Lam
Affiliation: Department of Mathematics, University of British Columbia and The Pacific Institute for the Mathematical Sciences, Vancouver, BC V6T1Z4, Canada
Email: nlam@math.ubc.ca

DOI: https://doi.org/10.1090/proc/13624
Received by editor(s): August 25, 2016
Received by editor(s) in revised form: December 17, 2016
Published electronically: June 9, 2017
Additional Notes: The research of this work was partially supported by the PIMS-Math Distinguished Post-doctoral Fellowship from the Pacific Institute for the Mathematical Sciences.
Communicated by: Svitlana Mayboroda
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society