Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

Vanishing of Ext and Tor over fiber products


Authors: Saeed Nasseh and Sean Sather-Wagstaff
Journal: Proc. Amer. Math. Soc. 145 (2017), 4661-4674
MSC (2010): Primary 13D02, 13D05, 13D07, 13D09
DOI: https://doi.org/10.1090/proc/13633
Published electronically: June 22, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a non-trivial fiber product $ R=S\times _kT$ of local rings $ S$, $ T$ with common residue field $ k$. Given two finitely generated $ R$-modules $ M$ and $ N$, we show that if $ \operatorname {Tor}^R_i(M,N)=0=\operatorname {Tor}^R_{i+1}(M,N)$ for some $ i\geq 5$, then $ \operatorname {pd}_R(M)\leq 1$ or $ \operatorname {pd}_R(N)\leq 1$. From this, we deduce several consequences, for instance, that $ R$ satisfies the Auslander-Reiten Conjecture.


References [Enhancements On Off] (What's this?)

  • [1] Tokuji Araya and Yuji Yoshino, Remarks on a depth formula, a grade inequality and a conjecture of Auslander, Comm. Algebra 26 (1998), no. 11, 3793-3806. MR 1647079
  • [2] M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631-647. MR 0179211
  • [3] Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
  • [4] Maurice Auslander, Songqing Ding, and Øyvind Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273-317. MR 1216471
  • [5] Maurice Auslander and Idun Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74. MR 0389977
  • [6] Luchezar L. Avramov and Hans-Bjørn Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. MR 1117631
  • [7] L. L. Avramov, S. B. Iyengar, S. Nasseh, and S. Sather-Wagstaff, Homology over trivial extensions of commutative DG algebras, preprint, arXiv:1508.00748, 2015.
  • [8] -, Persistence of homology over commutative noetherian rings, in preparation.
  • [9] Petter Andreas Bergh and David A. Jorgensen, On the vanishing of homology for modules of finite complete intersection dimension, J. Pure Appl. Algebra 215 (2011), no. 3, 242-252. MR 2729219
  • [10] Olgur Celikbas and Hailong Dao, Necessary conditions for the depth formula over Cohen-Macaulay local rings, J. Pure Appl. Algebra 218 (2014), no. 3, 522-530. MR 3124216
  • [11] Olgur Celikbas and Sean Sather-Wagstaff, Testing for the Gorenstein property, Collect. Math. 67 (2016), no. 3, 555-568. MR 3536062
  • [12] Olgur Celikbas and Ryo Takahashi, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra 382 (2013), 100-114. MR 3034475
  • [13] Olgur Celikbas and Roger Wiegand, Vanishing of Tor, and why we care about it, J. Pure Appl. Algebra 219 (2015), no. 3, 429-448. MR 3279364
  • [14] Lars Winther Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883. MR 1813596
  • [15] L. W. Christensen, H.-B. Foxby, and H. Holm, Derived category methods in commutative algebra, in preparation.
  • [16] Lars Winther Christensen and Henrik Holm, Algebras that satisfy Auslander's condition on vanishing of cohomology, Math. Z. 265 (2010), no. 1, 21-40. MR 2606948
  • [17] Lars Winther Christensen and David A. Jorgensen, Vanishing of Tate homology and depth formulas over local rings, J. Pure Appl. Algebra 219 (2015), no. 3, 464-481. MR 3279366
  • [18] Lars Winther Christensen, Janet Striuli, and Oana Veliche, Growth in the minimal injective resolution of a local ring, J. Lond. Math. Soc. (2) 81 (2010), no. 1, 24-44. MR 2580452
  • [19] Hailong Dao, Decent intersection and Tor-rigidity for modules over local hypersurfaces, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2803-2821. MR 3034448
  • [20] Andreas Dress and Helmut Krämer, Bettireihen von Faserprodukten lokaler Ringe, Math. Ann. 215 (1975), 79-82 (German). MR 0369345
  • [21] Hans-Bjørn Foxby, Homological dimensions of complexes of modules, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979) Lecture Notes in Math., vol. 795, Springer, Berlin, 1980, pp. 360-368. MR 582088
  • [22] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
  • [23] Raymond C. Heitmann, A counterexample to the rigidity conjecture for rings, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 94-97. MR 1197425
  • [24] Craig Huneke and Graham J. Leuschke, On a conjecture of Auslander and Reiten, J. Algebra 275 (2004), no. 2, 781-790. MR 2052636
  • [25] Craig Huneke, Liana M. Şega, and Adela N. Vraciu, Vanishing of Ext and Tor over some Cohen-Macaulay local rings, Illinois J. Math. 48 (2004), no. 1, 295-317. MR 2048226
  • [26] David A. Jorgensen, On tensor products of rings and extension conjectures, J. Commut. Algebra 1 (2009), no. 4, 635-646. MR 2575835
  • [27] A. I. Kostrikin and I. R. Šafarevič, Groups of homologies of nilpotent algebras, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 1066-1069 (Russian). MR 0092776
  • [28] Jack Lescot, La série de Bass d'un produit fibré d'anneaux locaux, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 12, 569-571 (French, with English summary). MR 647683
  • [29] Stephen Lichtenbaum, On the vanishing of $ {\rm Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220-226. MR 0188249
  • [30] W. Frank Moore, Cohomology over fiber products of local rings, J. Algebra 321 (2009), no. 3, 758-773. MR 2488551
  • [31] Saeed Nasseh and Yuji Yoshino, On Ext-indices of ring extensions, J. Pure Appl. Algebra 213 (2009), no. 7, 1216-1223. MR 2497570
  • [32] Tetsushi Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), no. 1, 27-48. MR 737823
  • [33] Liana M. Şega, Self-tests for freeness over commutative Artinian rings, J. Pure Appl. Algebra 215 (2011), no. 6, 1263-1269. MR 2769231
  • [34] Ryo Takahashi, On $ G$-regular local rings, Comm. Algebra 36 (2008), no. 12, 4472-4491. MR 2473342
  • [35] J.-L. Verdier, Catégories dérivées, SGA 4 $ \frac {1}{2}$, Lecture Notes in Mathematics, Vol. 569, pp. 262-311, Springer-Verlag, Berlin, 1977. MR 463174
  • [36] Jean-Louis Verdier, , and Des catégories dérivées des catégories abéliennes, with a preface by Luc Illusie; edited and with a note by Georges Maltsiniotis, Astérisque No. 239 (1996), xii+253 pp. (1997) (French, with French summary). MR 1453167
  • [37] George V. Wilson, The Cartan map on categories of graded modules, J. Algebra 85 (1983), no. 2, 390-398. MR 725091

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13D02, 13D05, 13D07, 13D09

Retrieve articles in all journals with MSC (2010): 13D02, 13D05, 13D07, 13D09


Additional Information

Saeed Nasseh
Affiliation: Department of Mathematical Sciences, Georgia Southern University, Statesboro, Georgia 30460
Email: snasseh@georgiasouthern.edu

Sean Sather-Wagstaff
Affiliation: Department of Mathematical Sciences, Clemson University, O-110 Martin Hall, Box 340975, Clemson, South Carolina 29634
Email: ssather@clemson.edu

DOI: https://doi.org/10.1090/proc/13633
Keywords: Auslander-Reiten, Ext-index, Ext-vanishing, fiber product, injective dimension, projective dimension, semidualizing complexes, Tor-vanishing
Received by editor(s): March 25, 2016
Received by editor(s) in revised form: April 20, 2016, and December 6, 2016
Published electronically: June 22, 2017
Additional Notes: The second author was supported in part by North Dakota EPSCoR, National Science Foundation Grant EPS-0814442, and NSA Grant H98230-13-1-0215.
Communicated by: Irena Peeva
Article copyright: © Copyright 2017 Copyright is retained by the authors.

American Mathematical Society