Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Schrödinger operators with guided potentials on periodic graphs


Authors: Evgeny Korotyaev and Natalia Saburova
Journal: Proc. Amer. Math. Soc. 145 (2017), 4869-4883
MSC (2010): Primary 47A10
DOI: https://doi.org/10.1090/proc/13733
Published electronically: July 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider discrete Schrödinger operators with periodic potentials on periodic graphs perturbed by guided non-positive potentials, which are periodic in some directions and finitely supported in other ones. The spectrum of the unperturbed operator is a union of a finite number of non-degenerate bands and eigenvalues of infinite multiplicity. We show that the spectrum of the perturbed operator consists of the ``unperturbed'' one plus the additional guided spectrum, which is a union of a finite number of bands. We estimate the position of the guided bands and their length in terms of graph geometric parameters. We also determine the asymptotics of the guided bands for large guided potentials. Moreover, we show that the possible number of the guided bands, their length and position can be rather arbitrary for some specific potentials.


References [Enhancements On Off] (What's this?)

  • [A12] Kazunori Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice, Ann. Henri Poincaré 14 (2013), no. 2, 347-383. MR 3028042, https://doi.org/10.1007/s00023-012-0183-y
  • [BK13] Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208
  • [BS99] Anne Boutet de Monvel and Jaouad Sahbani, On the spectral properties of discrete Schrödinger operators: the multi-dimensional case, Rev. Math. Phys. 11 (1999), no. 9, 1061-1078. MR 1725827, https://doi.org/10.1142/S0129055X99000337
  • [CGPNG09] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009), 109-162.
  • [C12] D. J. Colquitt, M. J. Nieves, I. S. Jones, A. B. Movchan, and N. V. Movchan, Localization for a line defect in an infinite square lattice, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2150, 20120579, 23. MR 3003822, https://doi.org/10.1098/rspa.2012.0579
  • [GKT93] D. Gieseker, H. Knörrer, and E. Trubowitz, The geometry of algebraic Fermi curves, Perspectives in Mathematics, vol. 14, Academic Press, Inc., Boston, MA, 1993. MR 1184395
  • [G15] Batu Güneysu, Semiclassical limits of quantum partition functions on infinite graphs, J. Math. Phys. 56 (2015), no. 2, 022102, 13. MR 3390865, https://doi.org/10.1063/1.4907385
  • [H15] R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, Waveguide sub-wavelength structures: a review of principles and applications, Laser Photon. Rev., 9 (2015), 25-49.
  • [Ha02] P. Harris, Carbon nano-tubes and related structure, Cambridge, Cambridge University Press, 2002.
  • [H89] W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, Inc., New York, 1989.
  • [HN09] Yusuke Higuchi and Yuji Nomura, Spectral structure of the Laplacian on a covering graph, European J. Combin. 30 (2009), no. 2, 570-585. MR 2489251, https://doi.org/10.1016/j.ejc.2008.03.008
  • [HS99a] Yusuke Higuchi and Tomoyuki Shirai, The spectrum of magnetic Schrödinger operators on a graph with periodic structure, J. Funct. Anal. 169 (1999), no. 2, 456-480. MR 1730561, https://doi.org/10.1006/jfan.1999.3478
  • [HS99b] Yusuke Higuchi and Tomoyuki Shirai, A remark on the spectrum of magnetic Laplacian on a graph, Proceedings of the 10th Workshop on Topological Graph Theory (Yokohama, 1998), 1999, pp. 129-141. MR 1732772
  • [HS04] Yusuke Higuchi and Tomoyuki Shirai, Some spectral and geometric properties for infinite graphs, Discrete geometric analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 29-56. MR 2077029, https://doi.org/10.1090/conm/347/06265
  • [IK12] Hiroshi Isozaki and Evgeny Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré 13 (2012), no. 4, 751-788. MR 2913620, https://doi.org/10.1007/s00023-011-0141-0
  • [IM14] Hiroshi Isozaki and Hisashi Morioka, A Rellich type theorem for discrete Schrödinger operators, Inverse Probl. Imaging 8 (2014), no. 2, 475-489. MR 3209307, https://doi.org/10.3934/ipi.2014.8.475
  • [J00] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Linear waveguides in photonic crystal slabs, Phys. Rev. B, 62 (2000), 8212-8222.
  • [JJ02] S. G. Johnson and J. D. Joannopoulos, Photonic crystals. The road from theory to practice, Springer US, 2002.
  • [Ka08] N. I. Karachalios, The number of bound states for a discrete Schrödinger operator on $ \mathbb{Z}^N,\ N\geq 1$, lattices, J. Phys. A 41 (2008), no. 45, 455201, 14. MR 2515832, https://doi.org/10.1088/1751-8113/41/45/455201
  • [K11] E. L. Korotyaev, Inverse resonance scattering for Jacobi operators, Russ. J. Math. Phys. 18 (2011), no. 4, 427-439. MR 2863561, https://doi.org/10.1134/S1061920811040054
  • [KK10] Evgeny L. Korotyaev and Anton Kutsenko, Zigzag nanoribbons in external electric fields, Asymptot. Anal. 66 (2010), no. 3-4, 187-206. MR 2648784
  • [KK10a] Evgeny L. Korotyaev and Anton A. Kutsenko, Zigzag nanoribbons in external electric and magnetic fields, Int. J. Comput. Sci. Math. 3 (2010), no. 1-2, 168-191. MR 2682280, https://doi.org/10.1504/IJCSM.2010.033933
  • [KL16] E. Korotyaev and A. Laptev, Trace formulae for Schrödinger operators with complex-valued potentials on cubic lattices, preprint: arXiv:1609.09703, 2016.
  • [KS14] Evgeny Korotyaev and Natalia Saburova, Schrödinger operators on periodic discrete graphs, J. Math. Anal. Appl. 420 (2014), no. 1, 576-611. MR 3229841, https://doi.org/10.1016/j.jmaa.2014.05.088
  • [KS15] Evgeny Korotyaev and Natalia Saburova, Spectral band localization for Schrödinger operators on discrete periodic graphs, Proc. Amer. Math. Soc. 143 (2015), no. 9, 3951-3967. MR 3359585, https://doi.org/10.1090/S0002-9939-2015-12586-5
  • [KS16] Evgeny Korotyaev and Natalia Saburova, Effective masses for Laplacians on periodic graphs, J. Math. Anal. Appl. 436 (2016), no. 1, 104-130. MR 3440084, https://doi.org/10.1016/j.jmaa.2015.11.051
  • [KS17] Evgeny Korotyaev and Natalia Saburova, Magnetic Schrödinger operators on periodic discrete graphs, J. Funct. Anal. 272 (2017), no. 4, 1625-1660. MR 3590247, https://doi.org/10.1016/j.jfa.2016.12.015
  • [Ku14] Anton A. Kutsenko, Wave propagation through periodic lattice with defects, Comput. Mech. 54 (2014), no. 6, 1559-1568. MR 3275237, https://doi.org/10.1007/s00466-014-1076-3
  • [Ku16] Anton A. Kutsenko, Algebra of 2D periodic operators with local and perpendicular defects, J. Math. Anal. Appl. 442 (2016), no. 2, 796-803. MR 3504027, https://doi.org/10.1016/j.jmaa.2016.05.015
  • [LP08] Fernando Lledó and Olaf Post, Eigenvalue bracketing for discrete and metric graphs, J. Math. Anal. Appl. 348 (2008), no. 2, 806-833. MR 2446037, https://doi.org/10.1016/j.jmaa.2008.07.029
  • [NG04] K. S. Novoselov and A. K. Geim, et al., Electric field effect in atomically thin carbon films, Science 22 October, 306 (2004), no. 5696, 666-669.
  • [OA12] G. G. Osharovich and M. V. Ayzenberg-Stepanenko, Wave localization in stratified square-cell lattices: The antiplane problem, J. Sound Vib., 331 (2012), 1378-1397.
  • [PR16] D. Parra and S. Richard, Spectral and scattering theory for Schrödinger operators on perturbed topological crystals, preprint: arXiv:1607.03573, 2016.
  • [RR07] Vladimir S. Rabinovich and Steffen Roch, Essential spectra of difference operators on $ \mathbb{Z}^n$-periodic graphs, J. Phys. A 40 (2007), no. 33, 10109-10128. MR 2371282, https://doi.org/10.1088/1751-8113/40/33/012
  • [RS78] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • [RS09] Grigori Rozenblum and Michael Solomyak, On the spectral estimates for the Schrödinger operator on $ \mathbb{Z}^d,\ d\ge 3$, J. Math. Sci. (N.Y.) 159 (2009), no. 2, 241-263. Problems in mathematical analysis. No. 41. MR 2544038, https://doi.org/10.1007/s10958-009-9436-9
  • [Sh98] Tomoyuki Shirai, A trace formula for discrete Schrödinger operators, Publ. Res. Inst. Math. Sci. 34 (1998), no. 1, 27-41. MR 1617621, https://doi.org/10.2977/prims/1195144826
  • [T89] Morikazu Toda, Theory of nonlinear lattices, 2nd ed., Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, 1989. MR 971987
  • [V14] Esa V. Vesalainen, Rellich type theorems for unbounded domains, Inverse Probl. Imaging 8 (2014), no. 3, 865-883. MR 3295949, https://doi.org/10.3934/ipi.2014.8.865

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A10

Retrieve articles in all journals with MSC (2010): 47A10


Additional Information

Evgeny Korotyaev
Affiliation: Department of Higher Mathematics and Mathematical Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
Email: korotyaev@gmail.com; e.korotyaev@spbu.ru

Natalia Saburova
Affiliation: Department of Mathematical Analysis, Algebra and Geometry, Northern (Arctic) Federal University, Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia
Email: n.saburova@gmail.com; n.saburova@narfu.ru

DOI: https://doi.org/10.1090/proc/13733
Keywords: Discrete Schr\"odinger operator, periodic graph, guided waves
Received by editor(s): December 16, 2016
Published electronically: July 28, 2017
Communicated by: Joachim Krieger
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society