Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An intrinsic parallel transport in Wasserstein space


Author: John Lott
Journal: Proc. Amer. Math. Soc. 145 (2017), 5329-5340
MSC (2010): Primary 51K10, 58J99
DOI: https://doi.org/10.1090/proc/13655
Published electronically: July 10, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ M$ is a smooth compact connected Riemannian manifold, let $ P(M)$ denote the Wasserstein space of probability measures on $ M$. We describe a geometric construction of parallel transport of some tangent cones along geodesics in $ P(M)$. We show that when everything is smooth, the geometric parallel transport agrees with earlier formal calculations.


References [Enhancements On Off] (What's this?)

  • [1] Luigi Ambrosio and Nicola Gigli, Construction of the parallel transport in the Wasserstein space, Methods Appl. Anal. 15 (2008), no. 1, 1-29. MR 2482206, https://doi.org/10.4310/MAA.2008.v15.n1.a3
  • [2] Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
  • [3] Nicola Gigli, On the inverse implication of Brenier-McCann theorems and the structure of $ (\mathcal {P}_2(M),W_2)$, Methods Appl. Anal. 18 (2011), no. 2, 127-158. MR 2847481, https://doi.org/10.4310/MAA.2011.v18.n2.a1
  • [4] Nicola Gigli, Second order analysis on $ (\mathcal {P}_2(M),W_2)$, Mem. Amer. Math. Soc. 216 (2012), no. 1018, xii+154. MR 2920736, https://doi.org/10.1090/S0065-9266-2011-00619-2
  • [5] Nicolas Juillet, On displacement interpolation of measures involved in Brenier's theorem, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3623-3632. MR 2813392, https://doi.org/10.1090/S0002-9939-2011-10891-8
  • [6] John Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), no. 2, 423-437. MR 2358290, https://doi.org/10.1007/s00220-007-0367-3
  • [7] John Lott, On tangent cones in Wasserstein space, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3127-3136. MR 3637959, https://doi.org/10.1090/proc/13415
  • [8] John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903-991. MR 2480619, https://doi.org/10.4007/annals.2009.169.903
  • [9] Shin-ichi Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), no. 2, 475-516. MR 2503990, https://doi.org/10.1353/ajm.0.0048
  • [10] Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101-174. MR 1842429, https://doi.org/10.1081/PDE-100002243
  • [11] A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), no. 1, 123-148. MR 1601854, https://doi.org/10.1007/s000390050050
  • [12] Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131. MR 2237206, https://doi.org/10.1007/s11511-006-0002-8
  • [13] Cédric Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 51K10, 58J99

Retrieve articles in all journals with MSC (2010): 51K10, 58J99


Additional Information

John Lott
Affiliation: Department of Mathematics, University of California - Berkeley, Berkeley, California 94720-3840
Email: lott@berkeley.edu

DOI: https://doi.org/10.1090/proc/13655
Received by editor(s): August 9, 2016
Received by editor(s) in revised form: January 6, 2017
Published electronically: July 10, 2017
Additional Notes: This research was partially supported by NSF grant DMS-1207654 and a Simons Fellowship
Communicated by: Guofang Wei
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society