Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The density property for Gizatullin surfaces completed by four rational curves


Authors: Rafael B. Andrist, Frank Kutzschebauch and Pierre-Marie Poloni
Journal: Proc. Amer. Math. Soc. 145 (2017), 5097-5108
MSC (2010): Primary 14R20, 32M17; Secondary 14R10
DOI: https://doi.org/10.1090/proc/13665
Published electronically: August 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Gizatullin surfaces completed by a zigzag of type $ [[0,0,-r_2,-r_3]]$ can be described by the equations $ yu=xP(x)$, $ xv=uQ(u)$ and $ yv=P(x)Q(u)$ in $ \mathbb{C}^4_{x,y,u,v}$ where $ P$ and $ Q$ are non-constant polynomials. We establish the algebraic density property for smooth Gizatullin surfaces of this type. Moreover we also prove the density property for smooth surfaces given by these equations when $ P$ and $ Q$ are holomorphic functions.


References [Enhancements On Off] (What's this?)

  • [1] Rafael B. Andrist, Frank Kutzschebauch, and Andreas Lind, Holomorphic automorphisms of Danielewski surfaces II: Structure of the overshear group, J. Geom. Anal. 25 (2015), no. 3, 1859-1889. MR 3358076
  • [2] R. Andrist and F. Kutzschebauch, The fibred density property and the automorphism group of the spectral ball, Math. Ann. , posted on (06 Feb 2017)., https://doi.org/10.1007/s00208-017-1520-8
  • [3] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767-823. MR 3039680
  • [4] Jérémy Blanc and Adrien Dubouloz, Affine surfaces with a huge group of automorphisms, Int. Math. Res. Not. IMRN 2 (2015), 422-459. MR 3340326
  • [5] F. Donzelli, A. Dvorsky, and S. Kaliman, Algebraic density property of homogeneous spaces, Transform. Groups 15 (2010), no. 3, 551-576. MR 2718937, https://doi.org/10.1007/s00031-010-9091-8
  • [6] M. H. Gizatullin, Quasihomogeneous affine surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1047-1071 (Russian). MR 0286791 (44 #4000)
  • [7] M. H. Gizatullin and V. I. Danilov, Examples of nonhomogeneous quasihomogeneous surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 42-58 (Russian). MR 0342519 (49 #7265)
  • [8] M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 523-565, 703 (Russian). MR 0376701 (51 #12876)
  • [9] Fabrizio Donzelli, Algebraic density property of Danilov-Gizatullin surfaces, Math. Z. 272 (2012), no. 3-4, 1187-1194. MR 2995164, https://doi.org/10.1007/s00209-012-0982-3
  • [10] Hubert Flenner, Shulim Kaliman, and Mikhail Zaidenberg, Birational transformations of weighted graphs, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 107-147. MR 2327237
  • [11] Hubert Flenner, Shulim Kaliman, and Mikhail Zaidenberg, Completions of $ \mathbb{C}^*$-surfaces, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 149-201. MR 2327238
  • [12] Hubert Flenner, Shulim Kaliman, and Mikhail Zaidenberg, Corrigendum to our paper ``Birational transformations of weighted graphs'' [MR2327237], Affine algebraic geometry, CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 35-38.
  • [13] Franc Forstnerič, Stein manifolds and holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 56, Springer, Heidelberg, 2011. The homotopy principle in complex analysis. MR 2975791
  • [14] Shulim Kaliman and Frank Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), no. 1, 71-87. MR 2385667 (2008k:32066)
  • [15] Shulim Kaliman and Frank Kutzschebauch, Density property for hypersurfaces $ UV=P(\overline X)$, Math. Z. 258 (2008), no. 1, 115-131. MR 2350038 (2008k:32062)
  • [16] Shulim Kaliman and Frank Kutzschebauch, Algebraic (volume) density property for affine homogeneous spaces, Math. Ann. 367 (2017), no. 3-4, 1311-1332. MR 3623226, https://doi.org/10.1007/s00208-016-1451-9
  • [17] Shulim Kaliman, Frank Kutzschebauch, and Matthias Leuenberger, Complete algebraic vector fields on affine surfaces (2015), available at arxiv:1411.5484.
  • [18] Sergei Kovalenko, Transitivity of automorphism groups of Gizatullin surfaces, Int. Math. Res. Not. IMRN 21 (2015), 11433-11484. MR 3456050, https://doi.org/10.1093/imrn/rnv025
  • [19] Frank Kutzschebauch, Flexibility properties in complex analysis and affine algebraic geometry, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 387-405. MR 3229363, https://doi.org/10.1007/978-3-319-05681-4_22
  • [20] Frank Kutzschebauch, Matthias Leuenberger, and Alvaro Liendo, The algebraic density property for affine toric varieties, J. Pure Appl. Algebra 219 (2015), no. 8, 3685-3700. MR 3320241, https://doi.org/10.1016/j.jpaa.2014.12.017
  • [21] Frank Kutzschebauch and Andreas Lind, Holomorphic automorphisms of Danielewski surfaces I--density of the group of overshears, Proc. Amer. Math. Soc. 139 (2011), no. 11, 3915-3927. MR 2823038, https://doi.org/10.1090/S0002-9939-2011-10855-4
  • [22] Dror Varolin, A general notion of shears, and applications, Michigan Math. J. 46 (1999), no. 3, 533-553. MR 1721579 (2001a:32032)
  • [23] Dror Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135-160. MR 1829353 (2002g:32026)
  • [24] Dror Varolin, The density property for complex manifolds and geometric structures. II, Internat. J. Math. 11 (2000), no. 6, 837-847. MR 1785520, https://doi.org/10.1142/S0129167X00000404

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14R20, 32M17, 14R10

Retrieve articles in all journals with MSC (2010): 14R20, 32M17, 14R10


Additional Information

Rafael B. Andrist
Affiliation: Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
Email: rafael.andrist@math.uni-wuppertal.de

Frank Kutzschebauch
Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Email: frank.kutzschebauch@math.unibe.ch

Pierre-Marie Poloni
Affiliation: Mathematisches Institut, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Email: pierre.poloni@math.unibe.ch

DOI: https://doi.org/10.1090/proc/13665
Received by editor(s): July 26, 2016
Received by editor(s) in revised form: January 6, 2017
Published electronically: August 30, 2017
Communicated by: Franc Forstnerič
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society