Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Universal formula for the Hilbert series of minimal nilpotent orbits


Authors: A. Matsuo and A. P. Veselov
Journal: Proc. Amer. Math. Soc. 145 (2017), 5123-5130
MSC (2010): Primary 17B20; Secondary 17B08
DOI: https://doi.org/10.1090/proc/13819
Published electronically: August 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Hilbert series of the projective variety $ X=P(O_{min}),$ corresponding to the minimal nilpotent orbit $ \mathcal O_{min},$ is universal in the sense of Vogel: it is written uniformly for all simple Lie algebras in terms of Vogel's parameters $ \alpha ,\beta ,\gamma $ and represents a special case of the generalized hypergeometric function $ {}_{4}F_{3}.$ A universal formula for the degree of $ X$ is then deduced.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958
  • [2] Arnaud Beauville, Fano contact manifolds and nilpotent orbits, Comment. Math. Helv. 73 (1998), no. 4, 566-583. MR 1639888, https://doi.org/10.1007/s000140050069
  • [3] William M. Boothby, A note on homogeneous complex contact manifolds, Proc. Amer. Math. Soc. 13 (1962), 276-280. MR 0137126, https://doi.org/10.2307/2034482
  • [4] F. Beukers and G. Heckman, Monodromy for the hypergeometric function $ _nF_{n-1}$, Invent. Math. 95 (1989), no. 2, 325-354. MR 974906, https://doi.org/10.1007/BF01393900
  • [5] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
  • [6] Devra Garfinkle, A new construction of the Joseph ideal, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)-Massachusetts Institute of Technology. MR 2941017
  • [7] Benedict H. Gross and Nolan R. Wallach, On the Hilbert polynomials and Hilbert series of homogeneous projective varieties, Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM), vol. 19, Int. Press, Somerville, MA, 2011, pp. 253-263. MR 2906911
  • [8] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
  • [9] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 1-29. MR 0404366
  • [10] Hajime Kaji, Masahiro Ohno, and Osami Yasukura, Adjoint varieties and their secant varieties, Indag. Math. (N.S.) 10 (1999), no. 1, 45-57. MR 1691463, https://doi.org/10.1016/S0019-3577(99)80004-4
  • [11] J. M. Landsberg and L. Manivel, A universal dimension formula for complex simple Lie algebras, Adv. Math. 201 (2006), no. 2, 379-407. MR 2211533, https://doi.org/10.1016/j.aim.2005.02.007
  • [12] T. Levasseur, S. P. Smith, and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal, and differential operators, J. Algebra 116 (1988), no. 2, 480-501. MR 953165, https://doi.org/10.1016/0021-8693(88)90231-1
  • [13] R. L. Mkrtchyan, A. N. Sergeev, and A. P. Veselov, Casimir eigenvalues for universal Lie algebra, J. Math. Phys. 53 (2012), no. 10, 102106, 7. MR 3050562, https://doi.org/10.1063/1.4757763
  • [14] P. Vogel The universal Lie algebra. Preprint (1999). Available at www.math.jussieu.fr/~vogel/A299.ps.gz
  • [15] Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935-936. MR 1610801, https://doi.org/10.1090/S0002-9939-99-04946-1
  • [16] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B20, 17B08

Retrieve articles in all journals with MSC (2010): 17B20, 17B08


Additional Information

A. Matsuo
Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo, 153-8914, Japan
Email: matsuo@ms.u-tokyo.ac.jp

A. P. Veselov
Affiliation: Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom — and — Moscow State University, Moscow 119899, Russia
Email: A.P.Veselov@lboro.ac.uk

DOI: https://doi.org/10.1090/proc/13819
Received by editor(s): January 9, 2017
Published electronically: August 1, 2017
Additional Notes: The work of the first author was partially supported by JSPS KAKENHI Grant Number JP26610004
Communicated by: Jerzy Weyman
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society