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IN DUNKL THEORY
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Abstract. In this paper we show that the representing measures of the Dunkl
intertwining operator associated to a Coxeter-Weyl group W in R

d and to a
multiplicity function k ≥ 0, have W -invariant supports under the condition
k > 0. This property enables us to determine explicitly the supports of the
measures representing the volume mean operator, a fundamental tool for the
study of harmonic functions relative to the Dunkl-Laplacian operator.

1. Introduction and statement of the results

Let R be a (finite) root system in R
d with associated Coxeter-Weyl group W

(see [7] or [9] for details on root systems) and for ξ ∈ R
d, let Dξ be the Dunkl

operator defined by

Dξf(x) = ∂ξf(x) +
∑

α∈R+

k(α) 〈α, ξ〉 f(x)− f(σαx)

〈α, x〉 , f ∈ C1(Rd),

where R+ is a subsystem of positive roots, σα is the reflection directed by the root
α ∈ R+, k is a nonnegative multiplicity function (defined on R) and ∂ξf is the
usual ξ-directional derivative of f .

These operators, introduced by C. F. Dunkl (see [1]), are related to partial
derivatives by means of an intertwining operator Vk (see [3] or [4]) as follows:

(1.1) ∀ ξ ∈ R
d, DξVk = Vk∂ξ.

We know that Vk is a topological isomorphism from the space C∞(Rd) (carrying its
usual Fréchet topology) onto itself satisfying (1.1) and Vk(1) = 1 (see [15]) and Vk

commutes with the W -action (see [14]) i.e.

(1.2) ∀ f ∈ C∞(Rd), ∀ g ∈ W, g−1.Vk(g.f) = Vk(f),

where g.f(x) = f(g−1x).
A fundamental fact due to M. Rösler (see [11] or [14]) is that for every x ∈ R

d,
there exists a unique compactly supported probability measure μk

x on R
d with

(1.3) supp μk
x ⊂ C(x) := co{gx, g ∈ W}
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(the convex hull of the orbit of x under the group W ) such that

(1.4) ∀ f ∈ C∞(Rd), Vk(f)(x) =

∫
Rd

f(y)dμk
x(y).

Note that the property (1.3) follows from the results in [8].
Throughout this paper, the notation k > 0 means that k(α) > 0 for all α ∈ R.
Concerning the measure μk

x (which we call Rösler’s measure at point x), the first
result of our paper is the following

Theorem A. For every x ∈ R
d, we have

1) x ∈ supp μk
x.

2) If k > 0, the support of μk
x is a W -invariant set.

3) If k > 0, then W.x (the W -orbit of x) is contained in supp μk
x.

A question strongly related to the support of Rösler’s measures concerns the
volume mean operator introduced by the authors in [6] in the study of harmonic

functions for the Dunkl-Laplacian operator Δk =
∑d

i=1 D
2
i where Di = Dei with

(ei)1≤i≤d an orthonormal basis of Rd. Precisely for x ∈ R
d and r > 0, the mean

value of a continuous function f at (x, r) is defined by

Mr
B(f)(x) :=

1

mk(B(0, r))

∫
Rd

f(y)hk(r, x, y)ωk(y)dy,

where y �→ hk(r, x, y) is the compactly supported measurable function (a general-
ized translate of 1B(0,r)) called the harmonic kernel (see Section 2) given by

(1.5) hk(r, x, y) :=

∫
Rd

1[0,r](
√
‖x‖2 + ‖y‖2 − 2 〈x, z〉)dμk

y(z),

mk is the measure dmk(x) := ωk(x)dx and ωk is the weight function

(1.6) ωk(x) :=
∏

α∈R+

∣∣ 〈α, x〉 ∣∣2k(α).
In particular we have shown that a C2(Rd)-function u is Δk-harmonic in R

d if
and only if for all (x, r) ∈ R

d × R+, u(x) = Mr
B(u)(x). For a further thorough

study of Δk-harmonicity on a general W -invariant open set, it would be crucial to
get information on the supports of the representing measures of the volume mean
operators. We already know that the measures

(1.7) dηkx,r =
1

mk(B(0, r))
hk(r, x, y)ωk(y)dy (x ∈ R

d, r > 0),

are probability measures with compact support equal to supp hk(r, x, .) and satis-
fying the following inclusion ([6]):

(1.8) supp hk(r, x, . ) ⊂ BW (x, r) :=
⋃

g∈W

B(gx, r),

where B(x, r) denotes the usual closed ball of radius r centered at x.
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In fact, the second main result of this paper, intimately related to Theorem A,
is a precise description of the support of hk(r, x, .). It states that

Theorem B. Let x ∈ R
d and r > 0.

1) We have B(x, r) ⊂ supp hk(r, x, .).
2) If k > 0, then we have

supp hk(r, x, .) = BW (x, r) :=
⋃
g∈W

B(g.x, r).

We will call BW (x, r) the closed W -ball centered at x and with radius r > 0 asso-
ciated to the Coxeter-Weyl group W .

2. The harmonic kernel and the mean value operator

In this section we recall some results of [6].
Let (r, x, y) �→ hk(r, x, y) be the harmonic kernel defined by (1.5). We note that

in the classical case (i.e. k = 0), we have μk
y = δy and h0(r, x, y) = 1[0,r](‖x−y‖) =

1B(x,r)(y).
The harmonic kernel satisfies the following properties (see [6]):

(1) For all r > 0 and x, y ∈ R
d, 0 ≤ hk(r, x, y) ≤ 1.

(2) For all fixed x, y ∈ R
d, the function r �−→ hk(r, x, y) is right-continuous

and nondecreasing on ]0,+∞[.
(3) Let r > 0 and x ∈ R

d. For any sequence (ϕε) ⊂ D(Rd) of radial functions
such that for every ε > 0,

0 ≤ ϕε ≤ 1, ϕε = 1 on B(0, r) and ∀ y ∈ R
d, lim

ε→0
ϕε(y) = 1B(0,r)(y),

we have

∀ y ∈ R
d, hk(r, x, y) = lim

ε→0

∫
Rd

ϕ̃ε(
√
‖x‖2 + ‖y‖2 − 2 〈x, z〉)dμk

y(z),

where ϕ̃ε is the profile function of ϕε i.e. ϕε(x) = ϕ̃ε(‖x‖).
(4) For all r > 0, x, y ∈ R

d and g ∈ W , we have

(2.1) hk(r, x, y) = hk(r, y, x) and hk(r, gx, y) = hk(r, x, g
−1y).

(5) For all r > 0 and x ∈ R
d, we have

(2.2) ‖hk(r, x, .)‖k,1 :=

∫
Rd

hk(r, x, y)ωk(y)dy = mk(B(0, r)) =
dkr

d+2γ

d+ 2γ
,

where dk is the constant

dk :=
∫
Sd−1 ωk(ξ)dσ(ξ) =

ck
2d/2+γ−1Γ(d/2+γ)

.

Here dσ(ξ) is the surface measure of the unit sphere Sd−1 of Rd and ck is
the Macdonald-Mehta constant (see [10], [5]) given by

ck :=

∫
Rd

e−
‖x‖2

2 ωk(x)dx.

(6) Let r > 0 and x ∈ R
d. Then the function hk(r, x, .) is upper semi-continuous

on R
d.
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(7) The harmonic kernel satisfies the following geometric inequality: if ‖a−b‖ ≤
2r with r > 0, then

∀ ξ ∈ R
d, hk(r, a, ξ) ≤ hk(4r, b, ξ)

(see [6], Lemma 4.1). Note that in the classical case (i.e. k = 0), this
inequality says that if ‖a− b‖ ≤ 2r, then B(a, r) ⊂ B(b, 4r).

(8) Let x ∈ R
d. Then the family of probability measures dηkx,r(y) defined by

(1.7) is an approximation of the Dirac measure δx as r −→ 0. That is,

∀ α > 0, lim
r→0

∫
‖x−y‖>α

dηkx,r(y) = 0

and if f is a locally bounded measurable function on a W -invariant open
neighborhood of x and if f is continuous at x, then (see [6], Proposition
3.2):

(2.3) lim
r→0

∫
Rd

f(y)dηkx,r(y) = lim
r→0

Mr
B(f)(x) = f(x).

3. Proof of the results

For convenience we group together the first items of Theorem A and Theorem
B in the following proposition.

Proposition 3.1. Let x ∈ R
d. Then

i) for every r > 0, x ∈ supp hk(r, x, .),
ii) x ∈ supp μk

x,
iii) for every r > 0, B(x, r) ⊂ supp hk(r, x, .).

Proof. i) Suppose that there exists r > 0 such that x /∈ supp hk(r, x, .). Then we
can find ε > 0 such that hk(r, x, y) = 0, for all y ∈ B(x, ε). Let f be a nonnegative
continuous function on R

d such that supp f ⊂ B(x, ε) and f = 1 on B(x, ε/2).
Since t �→ hk(t, x, y) is increasing on ]0,+∞[, we deduce that

∀ t ∈]0, r], 0 ≤ M t
B(f)(x) ≤

1

mk[B(0, t)]

∫
Rd

f(y)hk(r, x, y)ωk(y)dy = 0.

Hence, we obtain M t
B(f)(x) = 0, for all t ∈]0, r]. Letting t → 0 and using the

relation (2.3), we get a contradiction.
ii) Let x ∈ R

d be fixed. At first, we claim that

(3.1) ∀ r > 0, ∀ y ∈ R
d, hk(r, x, y) ≤ μk

x[B(y, r)].

Indeed, from the inclusion supp μk
x ⊂ B(0, ‖x‖), we see that

∀ y ∈ R
d, ∀ z ∈ supp μk

x, ‖y − z‖2 ≤ ‖y‖2 + ‖x‖2 − 2 〈y, z〉 .
This implies for any y ∈ R

d and r > 0 that

∀ z ∈ supp μk
x, 1[0,r]

(√
‖y‖2 + ‖x‖2 − 2 〈y, z〉

)
≤ 1[0,r](‖y − z‖) = 1B(y,r)(z).

If we integrate the two terms of the previous inequality with respect to the measure
μk
x, we obtain hk(r, y, x) ≤ μk

x

(
B(y, r)

)
and then (3.1) follows from (2.1).

Now, if x /∈ supp μk
x, there exists ε > 0 such that μk

x

(
B(x, ε)

)
= 0. Thus,

we have μk
x

(
B(y, ε/2)

)
= 0 whenever y ∈ B(x, ε/2). Using (3.1), we deduce that

hk(ε/2, x, .) = 0 on B(x, ε/2), a contradiction to the result of i).
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iii) Let y ∈ R
d such that ‖x−y‖ < r. As limz→y(‖x‖2+‖y‖2−2 〈x, z〉) = ‖x−y‖2,

there exists η > 0 such that√
‖x‖2 + ‖y‖2 − 2 〈x, z〉 ≤ r for every z ∈ B(y, η).

Therefore, by using the fact that y ∈ supp μk
y we obtain

hk(r, x, y) ≥ μk
y[B(y, η)] > 0.

�

Remark 3.1. For α ∈ R, let

Hα := {x ∈ R
d, 〈x, α〉 = 0}

be the hyperplane directed by α. We note that in [12, Corollary 3.6], and under
the condition x /∈

⋃
α∈R Hα, Rösler has proved that x ∈ supp μk

x by using the
asymptotic behavior of the Dunkl kernel Ek which is defined by

Ek(x, y) := Vk

(
e〈.,y〉

)
(x) =

∫
Rd

e〈z,y〉dμk
x(z).

We turn now to the second statement of Theorem A that we recall below:

Theorem 3.1. Let x ∈ R
d and assume that k > 0. Then the set supp μk

x is
W -invariant.

Proof. In order to simplify the formulas, we will assume here that the root system
R is normalized i.e. ‖α‖2 = 2 for all α ∈ R. In particular, for reflections we have
σαx = x− 〈α, x〉α.

We will prove that if y ∈ supp μk
x, then σαy ∈ supp μk

x for every α ∈ R. Let
then y ∈ supp μk

x and suppose that there is a root α ∈ R such that σαy /∈ supp μk
x.

Write y′ := σαy to simplify notation. There is a ball B(y′, ε) (ε > 0) such that for
all f ∈ C∞(Rd) with compact support included in B(y′, ε), we have∫

Rd f(z)μx(dz) = Vkf(x) = 0.

Let us denote by C∞
y′,ε (resp. Cy′,ε) the set of all functions f ∈ C∞(Rd) (resp.

f ∈ C(Rd)) with compact support in B(y′, ε). For all ξ ∈ R
d and all f ∈ C∞

y′,ε, we

also have ∂ξf ∈ C∞
y′,ε. By the intertwining relation (1.1) we obtain

∀ ξ ∈ R
d, ∀ f ∈ C∞

y′,ε, DξVkf(x) = 0.

Suppose f ∈ C∞
y′,ε and f ≥ 0 and let g := Vkf . We have g ≥ 0 on R

d (because Vk

preserves positivity) and

(3.2) ∀ ξ ∈ R
d, Dξg(x) = ∂ξg(x) +

∑
α∈R+

k(α)〈α, ξ〉g(x)− g(σαx)

〈x, α〉 = 0.

But as g(x) = 0, x is a minimum of g so ∂ξg(x) = 0 and relation (3.2) implies

(3.3) ∀ ξ ∈ R
d,

∑
α∈R+

k(α)〈α, ξ〉g(x)− g(σαx)

〈x, α〉 = 0.

Now, consider the set

Rx := {α ∈ R+; x ∈ Hα}.
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There are two possible locations for x:
• First case: Suppose that Rx = ∅ i.e x /∈

⋃
α∈R Hα (i.e. for all roots α ∈ R,

〈x, α〉 �= 0). Applying (3.3) with ξ = x and using the fact that g(x) = 0, we get∑
α∈R+

k(α)g(σαx) = 0.

As g ≥ 0 and by the assumption k > 0, we obtain that g(σαx) = Vkf(σαx) = 0 for
all α ∈ R+ and all f ∈ C∞

y′,ε and f ≥ 0. By uniform approximation, we deduce that

for all f ∈ Cy′,ε and f ≥ 0, we also have Vkf(σαx) = 0. Finally for every f ∈ Cy′,ε,
by decomposing f = f+−f− with f+ = max(f, 0) and f− = −min(f, 0) and using
the linearity and W -equivariance of Vk (relation (1.2)), we obtain that

∀ f ∈ Cy′,ε, ∀ α ∈ R+, Vkf(σαx) = Vk(σα.f)(x) = 0,

where σα.f is the function z �→ f(σαz). As it is easy to see that σα.Cy′,ε = Cσαy′,ε,
we deduce that

∀ α ∈ R+, ∀f ∈ Cσαy′,ε, Vkf(x) = 0.

But this implies in particular that Vkf(x) = 0 for all f ∈ Cy,ε in contradiction to
the hypothesis y ∈ supp μk

x. The result of the theorem follows in the first case.
• Second case: Suppose that Rx �= ∅. For every β ∈ Rx, clearly we have

x = σβx. Therefore, since g(x) = 0, we get g(σβx) = 0, for all β ∈ Rx. But, as x
is a minimum of g, we have

∀ β ∈ Rx,
g(x)− g(σβx)

〈x, β〉 =

∫ 1

0

∂βg(x− t 〈x, β〉β)dt = ∂βg(x) = 0.

Hence, the relation (3.3) with ξ = x implies∑
α∈R+\Rx

k(α)g(σαx) = 0.

Consequently, we obtain g(σαx) = 0 for all α ∈ R. The end of the proof of the first
case applies and gives also the result in this case. This completes the proof of the
theorem. �

From the W -invariance property of the support of μk
x and the fact that x ∈

supp μk
x, we obtain immediately the last assertion of Theorem A:

Corollary 3.1. Let x ∈ R
d and assume that k > 0 . Then, for all g ∈ W ,

gx ∈ supp μk
x.

Now, we can turn to the proof of the second statement of Theorem B.

Corollary 3.2. Let x ∈ R
d and r > 0. If k > 0, then

(3.4) supp hk(r, x, .) = BW (x, r) :=
⋃
g∈W

B(gx, r).

Proof. Let g ∈ W and y ∈ R
d such that ‖gx − y‖ < r. We will proceed as in the

proof of Proposition 3.1, iii). We have

lim
z→g−1y

√
‖x‖2 + ‖y‖2 − 2 〈x, z〉 = ‖x− g−1y‖.

Hence, there exists η > 0 such that for all z∈B(g−1y, η),
√
‖x‖2+‖y‖2−2 〈x, z〉 ≤ r

and thus hk(r, x, y) ≥ μk
y [B(g−1y, η)].

But, from the fact that g−1y ∈ supp μk
y we deduce that y ∈ supp hk(r, x, .).

This completes the proof. �
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Remark 3.2. When k ≥ 0, we will say that a root α ∈ R is active if k(α) > 0. Let
us denote by RA = {α ∈ R; k(α) > 0} the set of active roots and F the vector
subspace of Rd generated by {α, α ∈ RA}. Then we can generalize the results of
Theorems A and B in the following form:
a) The set RA is a root system. Indeed, using the fact that k is W -invariant, we
can see that for every α, β ∈ RA, k

(
σαβ

)
= k(β) > 0. Thus

∀ α ∈ RA, RA ∩ Rα = {±α} and σα(RA) = RA.

b) Let WA be the Coxeter-Weyl group associated to the root system RA. Then the
restriction kA of k to RA is clearly invariant under the WA-action. In other words,
it is a multiplicity function.
c) For any ξ ∈ R

d, we will use the notation ξ = ξ′ + ξ′′ ∈ F +F⊥ = R
d (where F⊥

is the orthogonal complement of F in R
d).

• Let x ∈ R
d. Rösler’s measure μk

x is of the form (see [13])

(3.5) μk
x = μkA

x′ ⊗ δx′′ ,

where μkA

x′ is Rösler’s measure associated to (RA, kA) and δx′′ is the Dirac measure
at x′′. We have

supp μk
x = x′′ + supp μkA

x′ .

From (1.3), the support of μkA

x′ is contained in the convex hull of WA.x
′ (the WA-

orbit of x′). Furthermore, by Theorem A, it is invariant under the action of the
group WA and contains the whole orbit WA.x

′.
• Let x ∈ R

d and r > 0. According to (1.5) and (3.5) the harmonic kernel is given
by

hk(r, x, y)=

∫
Rd

1[0,r]

(√
‖x′′ − y′′‖2 + ‖x′‖2 + ‖y′‖2 − 2 〈x′, z′〉

)
dμkA

y′ (z
′), y ∈ R

d.

The support of hk(r, x, .) takes the following form:

supp hk(r, x, .) = x′′ +BWA(x′, r) = x′′ +
⋃

g∈WA

B(gx′, r) =
⋃

g∈WA

B(gx, r).

Example 3.1. Let (e1, e2) be the canonical basis of R
2. Then, the set R :=

{±e1,±e2} is a root system in R
2, its Coxeter-Weyl group is Z2

2 and the multiplicity
function can be identified to a pair k = (k1, k2), with ki = k(ei) ≥ 0, i = 1, 2. Take
x = (x1, x2) ∈ R

2 with x1, x2 > 0. In this case, according to [16], Rösler’s measure
is given by μk

x = μk1
x1

⊗ μk2
x2
, where μki

xi
= δxi

if ki = 0 and

〈μki
xi
, f〉 = Γ(ki + 1/2)√

πΓ(ki)

∫ 1

−1

f(txi)(1− t)ki−1(1 + t)kidt

if ki > 0 (see [2]).
• If k = (0, 0), μk

x = δx and hk(r, x, y) = 1B(x,r)(y).

• If k = (k1, 0) with k1 > 0, then supp μk
x is the line segment between x and

σe1x = (−x1, x2) and

supp hk(r, x, .) = B(x, r) ∪B(σe1x, r).
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• If k1, k2 > 0, the support of μk
x is the convex hull of Z2

2.x and the closed W -ball
is given by

BZ
2
2(x, r) = supp hk(r, x, .)

= B
(
(x1, x2), r

)
∪B

(
(−x1, x2), r

)
∪B

(
(x1,−x2), r

)
∪B

(
(−x1,−x2), r

)
.
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