Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Support properties of the intertwining and the mean value operators in Dunkl theory


Authors: Léonard Gallardo and Chaabane Rejeb
Journal: Proc. Amer. Math. Soc. 146 (2018), 145-152
MSC (2010): Primary 31B05, 33C52, 47B39; Secondary 43A32, 51F15
DOI: https://doi.org/10.1090/proc/13478
Published electronically: September 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that the representing measures of the Dunkl intertwining operator associated to a Coxeter-Weyl group $ W$ in $ \mathbb{R}^d$ and to a multiplicity function $ k\geq 0$, have $ W$-invariant supports under the condition $ k>0$. This property enables us to determine explicitly the supports of the measures representing the volume mean operator, a fundamental tool for the study of harmonic functions relative to the Dunkl-Laplacian operator.


References [Enhancements On Off] (What's this?)

  • [1] Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183. MR 951883, https://doi.org/10.2307/2001022
  • [2] Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227. MR 1145585, https://doi.org/10.4153/CJM-1991-069-8
  • [3] Charles F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 123-138. MR 1199124, https://doi.org/10.1090/conm/138/1199124
  • [4] Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001. MR 1827871
  • [5] Pavel Etingof, A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups, Math. Res. Lett. 17 (2010), no. 2, 275-282. MR 2644375, https://doi.org/10.4310/MRL.2010.v17.n2.a7
  • [6] Léonard Gallardo and Chaabane Rejeb, A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3727-3753. MR 3451892, https://doi.org/10.1090/tran/6671
  • [7] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
  • [8] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162. MR 1223227, https://doi.org/10.1007/BF01244305
  • [9] Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001. MR 1838580
  • [10] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333-373. MR 1214452
  • [11] Margit Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463. MR 1695797, https://doi.org/10.1215/S0012-7094-99-09813-7
  • [12] Margit Rösler, Short-time estimates for heat kernels associated with root systems, Special functions (Hong Kong, 1999) World Sci. Publ., River Edge, NJ, 2000, pp. 309-323. MR 1805992
  • [13] Margit Rösler and Marcel de Jeu, Asymptotic analysis for the Dunkl kernel, J. Approx. Theory 119 (2002), no. 1, 110-126. MR 1934628, https://doi.org/10.1006/jath.2002.3722
  • [14] Margit Rösler, Dunkl operators: theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) Lecture Notes in Math., vol. 1817, Springer, Berlin, 2003, pp. 93-135. MR 2022853, https://doi.org/10.1007/3-540-44945-0_3
  • [15] Khalifa Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), no. 4, 349-374. MR 1872375, https://doi.org/10.1080/10652460108819358
  • [16] Yuan Xu, Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math. 49 (1997), no. 1, 175-192. MR 1437206, https://doi.org/10.4153/CJM-1997-009-4

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31B05, 33C52, 47B39, 43A32, 51F15

Retrieve articles in all journals with MSC (2010): 31B05, 33C52, 47B39, 43A32, 51F15


Additional Information

Léonard Gallardo
Affiliation: Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Campus de Grandmont, 37200 Tours, France
Email: Leonard.Gallardo@lmpt.univ-tours.fr

Chaabane Rejeb
Affiliation: Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Campus de Grandmont, 37200 Tours, France – and – Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématiques et Applications LR11ES11, 2092 El Manar I, Tunis, Tunisia
Email: chaabane.rejeb@gmail.com

DOI: https://doi.org/10.1090/proc/13478
Keywords: Dunkl-Laplacian operator, Dunkl's intertwining operator, generalized volume mean operator and harmonic kernel, R\"osler's measure, Dunkl harmonic functions
Received by editor(s): June 1, 2016
Received by editor(s) in revised form: September 13, 2016
Published electronically: September 27, 2017
Communicated by: Mourad Ismail
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society