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ABSTRACT. In this note, we study the stability of a critical point of a confor-
mally invariant functional F. For n > 3, by use of the variational formulas, we
prove that the Fubini-Study metric on CP” is a strictly stable critical point of
F.

1. INTRODUCTION

Let M be an n-dimensional closed and smooth manifold. Denote by .# (M) and
@ (M) the space of smooth Riemannian metrics and the diffeomorphism group of
M, respectively. We recall that a functional F : M — R is called Riemannian if F
is invariant under the action of (M), i.e., F(p*g) = F(g) for each ¢ € (M) and
g € M (M).

There are many results about the study of Riemannian functionals in the liter-
ature; for example, see [TH4L[7,T0,TT].

In [8], Kobayashi considered the following conformally invariant functional:

(1.1) Flg) = 2 /M | W |2 dVol,

n

where W is the Weyl conformal curvature tensor. His main subject in [§] was to
determine inf{F(g),g € .# (M)}, and he proved the following result:

Theorem 1.1 ([§]).
Flgrs) = inf{F(g),g € .4 (CP?)}.
Here grg is the Fubini-Study metric on CP2.

To determine inf{F(g),g € .# (M)} is not easy, so Kobayashi used variational
propositions of F to study the stability of some critical points.

Definition 1.2. Let g € .# (M) be a critical point of the functional F(g). Then g
is said to be stable if

d2

| Flg)>0

dt? l=0 (9) =

for all smooth variations g; with go = g. Moreover, g is said to be strictly stable if
g is stable and if equality of (2] holds only when %h:o € S1(g) (see [ZH)).

(1.2)
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For dimension 4, Besse proved that half-conformally flat metrics and metrics
which are locally conformal to an Einstein metric are critical points of F in [I].
In [8], Kobayashi calculated the second variation of F at critical point, and he
obtained the following stable result:

Theorem 1.3 ([8]). Let g be the standard Einstein metric on S?(1) x S%(1), g =
G+g, where g and g are Riemannian metrics on S?(1) with constant Gauss curva-
ture 1. Then, g is a strictly stable critical point of the functional F.

We generalized the result:

Theorem 1.4 ([5]). Let g be the standard Einstein metric on S3(1) x S3(1), that is,
g=3g+g, where g and g are Riemannian metrics on S®(1) with constant sectional
curvature 1. Then g is a strictly stable critical point of the functional F.

For n > 3, it is still an unsolved problem whether the Fubini-Study metric grg
on CP" is the minimum point of 7 on CP". In this note, we consider its stability
and prove the following result:

Theorem 1.5. Let grs be the Fubini-Study metric on CP". Then grg is a strictly
stable critical point of F for n > 3.
2. PRELIMINARIES AND NOTATION

Let (M,g) be an n-dimensional Riemannian manifold. We choose a local or-

thonormal vector field {eq,---,e,} adapted to the Riemannian metric g. The
Riemannian curvature tensor is defined by
(2.1) R(ei,ej,ex,e1) = g(Ve,Ve,er — Ve, Ve,e1 = Vig, e 161, €k);

here V is the Levi-Civita connection of g. Let W;;j; denote the components of the
Weyl curvature tensor of (M, g),

1
(2.2) Wijki = Riji — m(cikgjl — Cagjr + Cjigir — Cjrgar)-
Here C is a symmetric (0,2)-tensor defined by
r
2.3 C = Ric— —
(2.3 o~ 3y

with Ric and r denoting the Ricci curvature tensor and scalar curvature of g,
respectively. C' is called the Schouten tensor.

By denoting Sz (M) the vector space of all symmetric (0,2)-tensor fields on M,
we know that So(M) = Sp(g) ® S1(g) from Lemma 3.6 in [§], where

(24) So(g) = {h € SoM, divh = 0,trh = O},
(2.5) Si(g) ={Lxg+ fg, X € TM, f € C>(M)},

and this decomposition is orthogonal with respect to the Lo inner product defined
by g.

Recall that a Kahler manifold (M,g,J) is a Riemannian manifold (M, g) to-
gether with a compatible almost complex structure J, such that VJ = 0. On
(CP", grg, J), the Kéhler form is

O = —2v/—100In(20%0 + 2121 + -+ - + 2nZn);
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here {z9,21, -+ ,2n} is the natural complex coordinate system of C"*!. Let
{e1, - ,ean} be the orthonormal frame. Then its Riemannian curvature tensor
can be given by

1
R(e;, e, ex, er) :i[g(ei;ek)g(ejael) —g(ei er)glej,ex)
(2.6) +gles, Jer)g(ej, Jer) — glei, Je)g(e;, Jex)
+ 29(61', Jej)g(ek; Jel)},

and we have
Ric=(n+1)g, r =2n(n+1).

3. VARIATIONAL FORMULAS OF F oN CP"

In [8], Kobayashi gave the following variational formula for dimension n = 4:

Theorem 3.1 ([8]). Let M be a compact manifold of dimension 4 for a smooth
curve g = g(t) in M(M). Then

d d
(3.1) G760 = [ (x. Gayavol,

where X is a symmetric 2-tensor defined by X;; = Byjir + kaWiTk, and B is a
Cotten tensor defined by B, = Cir; — Cij k-

From this formula, we can see that Einstein metrics are critical points of F. For
general dimension, we get that:

Theorem 3.2 ([5]). Let M be a compact manifold of dimension n. Then g is a
critical point of F if and only if it satisfies

n : 2 n :
0=(VF)im=—| W |22 WijtiWn kL o | W |22 Wijmlcjl
(3.2) ) n-
- | W% Gim +2( W 272 Wijkm),™ .

With this formula, we prove the following lemma.

Lemma 3.3. gpg is a critical point of F on CP™.

Proof. In this case, VRm = 0 and gpg is Einstein, and we just need to check that
RijkiRmjki = Ngim- Let {e1,- -+, e2,} be the orthonormal frame. From the expres-
sion of Riemannian curvature (Z6]), we get
Rijklijkl = Rjy+ g(eia Jek)Rm(evm Jey, eg, el)
+g(e;, Jej)Rm(em, e, Jeg, e;)
In [5], we calculated the second variational formula of F on torus. Using the

same method, we have:

Theorem 3.4. Let (M, g) be an n-dimensional closed manifold, g a critical point of
F with VRm = 0, g; a smooth variation of g with go = g, and h = %\tzogt € So(g).
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Then
d? n
T t:O]-' =2(n—4) /M W2~ (Wijkmhim, ) dVol,
+ /M[Z : §|Ah\2 - 3Z : ;ORijk:lhjkhil,ss
— 2Nt jk Rt b — ﬁ@h, h)
53 - %Rijklhijimslhms - %szkzh]‘khiz
+ 2Ry jaRijrihimhs, + m(Ric, h)?
- %anjEsi(himJ — hjm,i) — mEjlhimhsiijsz
+ %hmwﬂsﬁw + EjrS: 1)

+(E-h,—Ah— %(h - Ric + Ric - h))] dVol, .
o

Here (Ric- h);j = Y Rirhij, E = Ric — g is the trace-free Ricci tensor.

2
Remark 3.5. When n = 4, we know that Wi, Wy = %gis. In this case,
since Ez Wijklﬂ’ = Z—::;Bjk?lv V‘FZJ = Bijk,k + Rmkaijk~ On higher dimension, we
|w?

should consider the variation of the tensor W;;uWjr — gis when calculating

the second variational formula of F.

n

The proof is similar to that of Theorem 4.1 in [5]. For convenience, we sketch
the calculation here. Since g is a critical metric, V.F|i—9 = 0, then
d2

d
- F = _
dt2 t=0 /M < dt

n_ .1
:/ 201 W 32 W) H 2 | W
M n

With VRm = 0, by a direct computation,

VF.h)dVol,
t=

2 Gim— | W |22 Wij R 7™ R'™ dVol,, .

/ [(| w |%72)7k Wijkmvj +(| w |%72)7j Wijkmvk]/him dVOlg =0
M
and

/ [(| W [272),% Wijkm] h™ dVoly = (n — 4)/ (W2~ (Wijkmhim,jr)* dVoly .
M M
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From the definition of Cotton tensor, we have
n—2
n—3

/ (Wijkm,™ ) hi™ dVol,,
M

— / [Bnij,’ '™ dVol,

M
= —/ [Bmij}/him,j dVOlg
M
(3.4) :/ [Crmi i) (Rim.j = hijm.i) dVolg
M

= /M [Cri(hjm.ij = Pim,ji) = S Csi(him.j — hjm.i)] dVolg

r
- / [(Brni = i) (hjim.ig = Timj5)
M n
— S5 Esi(him.j — hjm,i)] dVolg .

We also have

/ (Wijki R /¥ —
M
o ) ) w12
= / [(Wijkt) R ¥ R™ 4+ Wi (R I51) RI™ — %\hﬁ] dVol,
M

W

gim)'R"™ dVol,

2
= /M [2(hit i = Pjtik) Rmgrihim — mhim(C 187 St CirS7: 1)

2 . .
(3.5) - m(cfcgg‘i + 61.C}i) RjriPim — 2R st Wijkihim hsi] dVolg

= /M 2Rk Rmjrihim + 2Rijrihjr Rimsihms + 2Rijrihjihis Ro

2
_ —n 5 (Cz{l(Rjkhkl - Rijklhjk) — Oijhijilhlk _ Cishisijklhjk)
r
+ W«Ah’ h) — 2R;jkihjrRhi — 2R;;hjikhii)

2
— 2R jsiWijkihimhsk — Y him zlS + EJkS

m

i) dVolg .

ml,j

By combining [B4) and [BA]), we get (B3). O

4. PROOF OF THEOREM

Since grg is Einstein metric with Ric = (n + 1)g, from Theorem B4 we have

dtg / (W™ 2{ \Ah|2 2hit, jkPim Rkt
2n(n+1) 3n—5
(4.1) T Ton_1 (Ah, h) — hit ki Rijmiljm
2 2(n+1)
- mRijklhijimslhms + mRijklhjkhil

= 2Riji Rjmsthimhsr} dVolg .
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We have from (2.6]),

1
Rijmihjm = =

2 [ - g(€i7 Jel)g(ejv Jem)h(eja em) - trhgil

+ hiyg — 3h(Je;, Jep)).

(4.2)

For g(e;, Jem)h(ej, em) = 0 and trh = 0, we have
1
(4.3) Rijmihjm = 5 [ha = 3h(Jei, Jey)).

By putting @3) into (&II), we get
d? om—3

N Fe [ w22 AR — 2hi i R

dt? ‘t:o - /M W] {Qn — 2| | Ljk jkl

a (2Z§@n—+11) 2322 - ?) ){BhR)

(4.4) on—15 | n+l 5
m=1) 1)hzl,kkh(=]en Jep) + (

3(n+1) 3
—( om— 1 - n— 1)hllh(J€z,J€l)

= 2RijriRjmsthimhsi } dVoly .

2
2n—1 n—1)|h|

We need to compute
I:= 2Rl Rjmsthimhsk,
I1 = —2hg juhim Ronjia-
From (2.6)), we have
I = Rpjhimhis — Rijrihjrha
+ Ric(em, Jes)h(Jeg, em)h(er, es)
— Rm(em, Jek, es, er)h(Jer, em)h(e, es)
+ 2Rm(em, e, es,e))h(Jej, em)h(Jey, es).
Using the first Bianchi identity, we get
2Rm(em, €j, es,e1)h(Jej, em)h(Je, es)
= —2Rm(em, es, €1, ¢j)h(Jej, em)h(Jey, es)
(4.6) — 2Rm(em, €1, €5, es)h(Jej, em)h(Jer, es)
= —2(Lh,h) —2Lh(e;, es)h(Jer, Jes)
= 2|h|* + 2h(Je;, Jej)h(ei, ;).
Put ([4.0) into ([3); then
I =(n+ D)[h*>+ (n+ 1)h(Jey, Jes)h(ek, es)
+ 2Rm(em, €5, es, e1)h(Jej, em)h(Jer, es)
— Rijihjph(Jei, Jer) — Rijrihjiha
=(n 4+ 4)[|n|* + h(Jex, Jes)h(ex, es)].
We have from the expression of Riemannian curvature (2.6]),
IT =h(e;, Je))V2h(es, e, Jeg, er) — h(ei, Jer)V2h(es, er, Jey, er)
+ (Ah, h) — 2h(e;, Je;)Vh(e;, e e, Jey).

(4.5)

(4.7)

(4.8)
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From the Ricci identity, we get

V2h(ei, er, Jer, ex) — V2h(es, e, ex, Jey)
= h(es,e))Rm(es, e;, Jeg, ex) + h(es,e;)Rm(es, er, Jek, ex)
= 2Ric(es, Je;)h(es, e1) + 2Ric(es, Je)h(es, €;)
=2(n+ 1)[h(Je; e1) + h(Jer, e;)].

(4.9)

Since V2h(e;, er, Jer, exr) = —V2h(e;, er, ex, Jer), we get

h(e;, Jel)Vzh(ei,el, Jeg, ex)
(4.10) =(n+ D)[|h|* + h(e;, Je))h(Jeq, er)]
=(n 4+ )[|h)* = h(ei, er)h(Jes, Jey)].

And with (@3)), we have

V2h(e;, Jer, er,ex) — V2h(e;, Jer, ek, €)
= h(es, Je;)Rm(es, e;, e, er) + h(e;, es)Rm(es, Jey, e, ex)
(4.11) = h(es, Je;)Rm(es, e;, Jey, Jep) — h(e;, es)Rm(Jes, e, e, ex)

1
= —Shles Ter) - gh(Jei,ek) — (n+ Dh(es, Jex).

So, from ([@8), (AI0) and @II), we get

II =(Ah,h) — 3h(ei, Je;)V?h(ei, el €5, Jey)
(4.12) 1. 1
- §|h| —(n— §)h(ei,ek)h(Jei, Jeg).

Putting (7)) and [@I2) into @4), we get

d? on —3 In— 15
prei R AL ABP?+ o hagh(Jeq, J
dtQ‘t=0]:_/M| S Ll +2(n_1) Lkkh(Jei, Jer)
m2+1 3n-5
_(211—1 T o2
(4'13) — 3h(61‘, Jej)VQh(ei, el e, JE[)
5 3
4_
- T Y sy
9 3

+ 8- 320 —1) + p— 1)h(Jek, Jes)h(e, es)} dVol, .

(Ah, k)

|

For VJ =0,
|/ h(ei, Je;)V*h(ei, er, e, Jer) dVoly |
M
(4.14) = | /M Vhei, Jej, Jer)Vh(e;, e, ej) dVolg |

< / |Vh|* dVol,
M

331
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and

| / hil,kkh(Jei, Jel) dVOlg |

M
(4.15) = | —/ Vh(ei, ej,ex)Vh(Je;, Jej, er) dVolg |
M
< / |Vh|? dVol, .
M

Together with
1> h(Jex, Jes)h(ex, es)| < |h)%,
k,s

we have
d? 2n — 3
el > Wn72 Ah2
dtQ’t=0]:_/M W {2n—2‘ |
m2+1 3n-5
(4.16) _ _ 2
+(2n—1 n—1 3)IVh|
+(n+1—i 0 )|h|?} dVol
n—1 2n-1 7"
When n > 5, we can check that % F >0, and the equality holds if and only if
t=0
h=0.
When n = 3,
d? 3 6 6
— > W | {Z|AR)?> = Z|VA[? + Z|h|*} dVol
Gl = [ IWIGIANE = SIThE £ Sh avel,
3 4 18
= W|[=|ARh + =h|? + —|h[*] dVol, > 0.
[ IWIGIah+ ShE + S avol, >
When n =4,
d? 5 5 13 67
— ~|AR|2 — Z|VA[* + —|h[*} dVol
Gl T = [ 1w R GIake - 29 + S bRy avl,
919 13 5 9
> |[W1°[Z|Ah + ——h|* + 3|h|?] dVol, > 0,
M 6 35
and the equalities hold if and only if h = 0. ]

Remark 4.1. For CP?, we know that F(grs) = inf{F(g),g € M}, so it must be a
stable critical point of F(g). In fact, it is strictly stable.
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