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PATTERN AVOIDANCE SEEN IN MULTIPLICITIES

OF MAXIMAL WEIGHTS OF AFFINE LIE

ALGEBRA REPRESENTATIONS

SHUNSUKE TSUCHIOKA AND MASAKI WATANABE

(Communicated by Kailash C. Misra)

Abstract. We prove that the multiplicities of certain maximal weights of

g(A
(1)
n )-modules are counted by pattern avoidance on words. This proves and

generalizes a conjecture of Jayne-Misra. We also prove similar phenomena in

types A
(2)
2n and D

(2)
n+1. Both proofs are applications of Kashiwara’s crystal

theory.

1. Introduction

Let g = g(A) be a Kac-Moody Lie algebra associated with a symmetrizable
GCM A. For each dominant integral weight Λ ∈ P+

A , we have the integrable highest
weight module V (Λ) and the set of weights PA(Λ) := {μ ∈ h∗ | V (Λ)μ �= 0} with
the Weyl group W acting on it. Studies of the multiplicities of weight spaces, i.e.,
mA(Λ, μ) := dimV (Λ)μ for μ ∈ PA(Λ), occupy a central position in combinatorial
representation theory. For example, popular algebro-combinatorial ingredients such
as Young Tableaux, Kashiwara’s crystal, etc., are directly related to such dimension
countings.

On the other hand, sometimes information on PA(Λ) or mA(Λ, μ) gives that
of representation theory of seemingly different algebras (and vice versa) via cate-
gorification. For example, by virtue of Lascoux-Leclerc-Thibon-Ariki theory and
its subsequent developments, we know that P

A
(1)
p−1

(Λ) parameterizes the blocks of

certain cyclotomic Hecke algebras (a.k.a. Ariki-Koike algebras) H and under this
identification it is known that

(a) the orbit space P
A

(1)
p−1

(Λ)/W enumerates the possible derived equivalence classes

of blocks of H [CR, §7.2],
(b) m

A
(1)
p−1

(Λ, μ) tells us the number of irreducible modules of the block [LM, The-

orem A].

Similar theorems are expected for other types of “Hecke algebras”, such as KLR
algebras, Hecke-Clifford algebras, etc., by choosing A suitably.

A rough structure of PA(Λ) is known when A is affine.
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Proposition 1.1 ([Kac, §12.6]). Let A be an affine GCM. For Λ ∈ P+
A , we have

PA(Λ) =
⊔

λ∈maxA(Λ)

{λ− nδ | n ≥ 0}

where maxA(Λ) is the set of all maximal weights of V (Λ) defined as follows:

maxA(Λ) = {λ ∈ PA(Λ) | λ+ δ �∈ PA(Λ)}.
Clearly, maxA(Λ) is W -invariant and also any λ ∈ maxA(Λ) is W -conjugate to

a maximal dominant weight (i.e., maxA(Λ) = W · (maxA(Λ) ∩ P+
A )). It is known

that the set of dominant maximal weights maxA(Λ)∩P+
A is finite [Kac, Proposition

12.6].
When Λ is level 1, the Hecke algebras appearing in the the aforementioned

correspondence via categorification are Iwahori-Hecke algebras of type A. Note that
maxX(Λ) ∩ P+

X = {Λ} when Λ is level 1 and X is affine A,D,E type [Kac, Lemma
12.6]. In a course of a study of representation theory of Iwahori-Hecke algebras of
type B, the first author studied the set of dominant maximal weights

max
A

(1)
p−1

(Λ0 + Λs) ∩ P+

A
(1)
p−1

for 0 ≤ s < p.

Definition 1.2. Let p ≥ 2 be an integer (not necessarily a prime). For � ≥ 1 and
t, u with t ≥ 0, �+ t < p− �+ 1 and u ≤ p, � < u− �+ 1, we define two elements of

the root lattice Q of ŝlp = g(A
(1)
p−1) as follows:

λp
�,t = �α0 +

⎛⎝ �α1 + · · ·+ �αt

+(�− 1)αt+1 + (�− 2)αt+2 + · · ·+ α�+t−1

+αp−�+1 + · · ·+ (�− 2)αp−2 + (�− 1)αp−1

⎞⎠ ,

μp
�,u = �α0 +

⎛⎝ (�− 1)α1 + (�− 2)α2 + · · ·+ α�−1

+αu−�+1 + · · ·+ (�− 2)αu−2 + (�− 1)αu−1

+�αu + · · ·+ �αp−1

⎞⎠ .

Recall that A = A
(1)
p−1 = (2δij − δi+1,j − δi−1,j)i,j∈Z/pZ and I = Z/pZ (see Figure

1). Throughout, we sometimes identify the set I = Z/pZ with {0, 1, · · · , p− 1}.
We note that for p ≥ 2 and when t = 0, u = p, λp

�,0 is defined exactly when μp
�,p is

defined and in this case we have λp
�,0 = μp

�,p. For a Dynkin diagram automorpshim

(see §3.2) ω : I ∼−−→ I, i 	−→ −i, we have ω(λp
�,t) = μp

�,p−t, ω(μ
p
�,u) = λp

�,p−u.
The dominant maximal weights and their multiplicities are given as follows.

Theorem 1.3 ([Ts1, Theorem 1.4]). Let p ≥ 2 be an integer (not necessarily a

prime) and consider a level 2 weight Λ = Λ0 + Λs of ŝlp for some 0 ≤ s < p. We
have
(a) max

A
(1)
p−1

(Λ) ∩ P+

A
(1)
p−1

= {Λ} 
 {Λ− λp
�,s | 1 ≤ � ≤ �p−s

2 �}


{Λ− μp
�,s | 1 ≤ � ≤ � s

2�},

(b) m
A

(1)
p−1

(Λ,Λ− λp
�,s) = D�,s, mA

(1)
p−1

(Λ,Λ− μp
�,s) = D�,p−s.

Here Dn,m is the number of lattice paths from (0, 0) to (n + m,n) with steps
(1, 0) and (0, 1) that do not exceed the diagonal y = x. It is not difficult to see
Dn,m = m+1

n+m+1

(
2n+m

n

)
[St2, Exercise 6.20.b].
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A
(1)
1 = D

(2)
2 ◦

α0

⇔ ◦
α1

A
(1)
� −−−

◦
α0

−−−
◦
α1

− ◦
α2

− · · · − ◦
α�

D
(2)
�+1 ◦

α0

⇐ ◦
α1

− · · · − ◦
α�−1

⇒ ◦
α�

A
(2)
2 ◦

α0

◦
α1

A
(2)
2� ◦

α0

⇐ ◦
α1

− · · · − ◦
α�−1

⇐ ◦
α�

Figure 1. Affine Dynkin diagrams of A,D,E.

For a higher level Λ ∈ P+

A
(1)
p−1

, the structure of the set max
A

(1)
p−1

(Λ) ∩ P+

A
(1)
p−1

gets

complicated, but one can easily see the following whose proof will be recalled in
§4.1.

Lemma 1.4. For Λ = kΛ0 + Λs where k ≥ 1 and 0 ≤ s < p, we have

{Λ− λp
�,s | 1 ≤ � ≤ �p− s

2
�} 
 {Λ− μ�,s | 1 ≤ � ≤ �s

2
�} ⊆ max

A
(1)
p−1

(Λ) ∩ P+

A
(1)
p−1

.

Based on an observation that Dn,0 is the Catalan number and thus the number
of 321-avoiding permutations of n [St2, Exercise 6.19.ee], Jayne-Misra conjectured

a link between multiplicities of certain maximal weights of ŝlp-modules and pattern
avoidance.

Conjecture 1.5 ([MR1, Conjecture 4.13]). For 1 ≤ � ≤ �p/2�,
m

A
(1)
p−1

((k + 1)Λ0, (k + 1)Λ0 − λp
�,0)

is equinumerous to ((k + 2), (k + 1), · · · , 2, 1)-avoiding permutations of �.

Our main theorem proves and generalizes it in the following way.

Theorem 1.6. Let p ≥ 2 be an integer and consider a level k + 1 weight of the

form Λ = kΛ0 +Λs of ŝlp for some 0 ≤ s < p and k ≥ 1. Then, for 1 ≤ � ≤ �p−s
2 �,

m
A

(1)
p−1

(Λ,Λ− λp
�,s) is equinumerous to shuffles of 0s, 1, 2, · · · , � (there are s zeros)

that have no strictly decreasing subsequence of length k + 2.

By symmetry, for 0 < s < p and 1 ≤ � ≤ � s
2�, mA

(1)
p−1

(Λ,Λ− μp
�,s) is equal to

#{shuffles of 0p−s, 1, 2, · · · , � that have no strictly decreasing subsequence

of length k + 2}.
Our proof is based on a result of Ariki-Kreiman-Tsuchioka which characterizes

the connected component (known as Kleshchev multipartitions in modular represen-

tation theory of Hecke algebras) of A
(1)
p−1-crystal B(aΛ0+bΛs) ⊆ B(Λ0)

⊗a⊗B(Λs)
⊗b

in the tensor product [AKT, Corollary 9.6]. This result is a combinatorial incarna-
tion of Littelmann’s result [Lit, Theorem 10.1].
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While a link between multiplicities of maximal weights of ŝlp-modules and pat-
tern avoidance was first observed in [MR1], we see similar appearances of pattern

avoidance in multiplicities of maximal weights of affine Lie algebras of types A
(2)
2n

andD
(2)
n+1 (for a crystal-theoretic distinction of types A

(1)
n , A

(2)
2n , D

(2)
n+1, see [Ts2, §1]).

In the following, Lie theoretic objects associated with Ǎ are written withˇattached.

Theorem 1.7. Let p ≥ 2 be an integer and consider a level k + 1 weight of the

form Λ̌ = (k + 1)Λ̌0 of Ǎ = A
(2)
p−1 (resp. D

(2)
1+p/2) depending on p being odd (resp.

even) where k ≥ 1 (see Figure 1). For 1 ≤ � ≤ �p/2�,

(a) γ� := Λ̌− �α̌0 − (�− 1)α̌1 − · · · − α̌�−1 ∈ maxǍ(Λ̌) ∩ P+
Ǎ
,

(b) mǍ(Λ̌, γ�) is equinumerous to ((k+2), (k+1), k, · · · , 1)-avoiding involutions of
�.

Our proof is based on a result of Naito-Sagaki [NS1, Theorem 4.4] on Kashi-
wara’s crystals fixed by a diagram automorphism which is also an application of
Littelmann’s path model.

When preparing the paper, [MR2] appeared on the arXiv and gives a proof of
Conjecture 1.5, i.e., the case of s = 0 of Theorem 1.6. Note that in [MR1], Jayne-
Misra also give a conjectural formula [MR1, Conjecture 3.9] on the cardinality
#(max

A
(1)
p−1

(kΛ0) ∩P+

A
(1)
p−1

) which we prove in §4 using the q-Lucas theorem dating

back to Gauss.

Notation and Conventions. We assume that readers are familiar with Kac-Moody
Lie algebras and Kashiwara’s crystal theory ([Kac] and [Kas] are standard refer-
ences).

For integers a ≥ 0 and b ≥ 1, we denote by a%b the remainder of a by b, namely
the unique integer 0 ≤ c < b such that a− c ∈ bZ.

The set of partitions is denoted by Par and the symbol ∅ is reserved for the empty
partition. For a partition λ = (λ1, λ2, · · · ) ∈ Par, we define |λ| =

∑
i≥1 λi and

�(λ) = #{i ≥ 1 | λi �= 0}(= (trλ)1). For n ≥ 0, we put Par(n) = {λ ∈ Par | |λ| = n}.
For a ≥ 0, b ≥ 1, (ab) is an abbreviation for a partition c such that c1 = · · · = cb = a.

The symbol RParp (resp. Par
p-core) stands for the set of p-restricted (resp. p-core)

partitions for p ≥ 2. Recall that λ ∈ Par is p-restricted (resp. p-core) if λi−λi+1 < p
for i ≥ 1 (resp. if there is no removable p-hook). Note that Parp-core ⊆ RParp.

A semistandard tableaux (SST, for short) is a filling of the Young diagram by in-
tegers which are weakly increasing along rows and strictly increasing along columns.
A column-strict plane partition (CSPP, for short) is a filling of the Young diagram
by positive integers which are weakly decreasing along rows and strictly decreasing
along columns. For an SST or a CSPP T , we denote by sh(T ) the underlying Young
diagram. The content cont(T ) of T is a multiset of the numbers filled in T .

For λ ∈ Par, we denote by SST(λ) (resp. CSPP(λ)) the set of SST (resp. CSPP)
of shape λ. As usual, ST(λ) (resp. RST(λ)) means the set of standard tableaux
T (resp. reverse standard tableaux), i.e., SST (resp. CSPP) such that cont(T ) =
{1, 2, · · · , |λ|}.

Finally, Mod(A) means the abelian category of finite-dimensional left A-modules
and A-homomorphisms between them for a finite-dimensional algebra A over a field
F. We denote by Irr(Mod(A)) the set of isomorphism classes of simple objects in
Mod(A).
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2. Proof of Theorem 1.6

In this section, p, k, �, s are as in Theorem 1.6, i.e., p ≥ 2, k ≥ 1, 0 ≤ s < p, 1 ≤
� ≤ �(p− s)/2�. We will show that m

A
(1)
p−1

(Λ,Λ− λp
�,s) = #V where Λ = kΛ0 +Λs

and

V = {shuffles of 0s, 1, 2, · · · , � that have no strictly decreasing subsequence

of length k + 2}.

2.1. Robinson-Schensted-Knuth correspondence. Recall the Robinson-
Schensted-Knuth correspondence (RSK correspondence, for short) (see [Ful, §4]).
Fix a multiset J = {w1, · · · , wm} ⊆ Z with cardinality m (counted with multiplic-
ity). RSK correspondence gives a bijection between the set of shuffles (or words)
of w1, · · · , wm and⊔

λ∈Par(m)

{(P,Q) ∈ SST(λ)× ST(λ) | cont(P ) = J}.

We mean by (P,Q) = RSK(w) that a shuffle (or a word) w maps to a pair of
tableaux (P,Q) of the same shape via RSK correspondence. How RSK correspon-
dence respects ordered subsequences of a shuffle is well known (see [Ful, §3]).
Lemma 2.1. Let (P,Q) = RSK(w) with λ = sh(P ) = sh(Q). Then, �(λ) is the
length of the largest strictly decreasing subsequence of w.

In summary, RSK correspondence gives a bijection between V and V1 where

V1 =
⊔

λ∈Par(�+s)
�(λ)≤k+1

{(P,Q) ∈ SST(λ)× ST(λ) | cont(P ) = {0s, 1, · · · , �}}.

Thus, we know that there is a bijection V ∼−−→V2 where

V2 =
⊔

λ∈Par(�+s)
�(λ)≤k+1

{(P,Q) ∈ RST(λ)× RST(λ) |

all �+ s, · · · , �+ 1 appear in the first row of P}.
For a permutation w ∈ Sm = Aut({1, · · · ,m}), we define word(w) = w1 · · ·wm

which is a shuffle of {1, 2, · · · ,m} by wi = w(i) for 1 ≤ i ≤ m. We will use the
following well-known symmetry in §3 (see [Ful, §4]).

Lemma 2.2. For w ∈ Sm with RSK(word(w)) = (P,Q), we have RSK(word(w−1))
= (Q,P ).

2.2. Kleshchev multipartitions. Crystal theoretically, the number

m
A

(1)
p−1

(Λ,Λ− λp
�,s)

is translated as the following counting:

#{b := μ⊗ λ(1) ⊗ · · · ⊗ λ(k) ∈ B(Λs)⊗B(Λ0)
⊗k | b ∈ B(Λ),wt(b) = Λ− λp

�,s}.

Here B(Λ) means the naturally embedded one in B(Λs)⊗B(Λ0)
⊗k.

We adapt the Misra-Miwa realization [MM] for A
(1)
p−1-crystal B(Λs) for 0 ≤

s < p. We need not know the details of this realization such as the definition
of Kashiwara operators. All we need to know is the following basic things and a
result [AKT, Corollary 9.6]:
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(A) The underlying set of B(Λs) is RParp.
(B) For each λ ∈ B(Λs) and each box x = (i, j) ∈ λ (this means x is the box

inside λ located at the i-th row and the j-th column), x has the quantity
res(x) = (s− i+ j) + pZ ∈ Z/pZ, called the residue of x.

(C) For each λ ∈ B(Λs),

wt(x) = wts(x) := Λs −
∑

i∈Z/pZ

#{x ∈ λ | res(x) = i} · αi.(2.1)

Theorem 2.3 ([AKT, Corollary 9.6]). Let b := μ ⊗ λ(1) ⊗ · · · ⊗ λ(k) ∈ B(Λs) ⊗
B(Λ0)

⊗k. Then b ∈ B(kΛ0 +Λs) (i.e., b is a Kleshchev multipartition) if and only
if τ(p−s)%p(base(μ)) ⊇ roof(λ(1)) and base(λ(i)) ⊇ roof(λ(i+1)) for all 1 ≤ i < k.

Here base, τm [AKT] where 0 ≤ m < p and roof [KLMW] are explicit maps{
base, roof : RParp −→ Parp-core

τm : Parp-core −→ Parp-core

and λ′ ⊇ μ′ means that λ′ contains μ′ as Young diagrams. We need not know the
precise definitions of maps base, roof and τm, however we need the following:

(a) For a p-core partition λ, we have λ = base(λ) = roof(λ) [AKT, Definition
2.5,2.8].

(b) For a p-core partition λ = (λ1, · · · , λa), we have τm(λ) = (ν1, · · · , νa+m) [AKT,
Proposition 9.4] where

νi =

⎧⎪⎨⎪⎩
λi + ((p−m)%p), (1 ≤ i ≤ m),

min{λi + ((p−m)%p), λi−m}, (m < i ≤ a),

min{(p−m)%p, λi−m}, (a < i ≤ a+m).

Note that τ0 = idParp-core and τm(λ) = shift(p−m)%p(λ)∩(∞m, λ) where shiftt(λ) =
(λi + t)i≥1 for λ ∈ Par and t ≥ 0. Of course, shiftt(λ) and (∞m, λ) are not Young
diagrams in the usual sense. But in this section, an infinite Young diagram ν
of these forms only appears as the form ν ⊇ μ for a usual finite Young diagram
μ ∈ Par.

Proposition 2.4. As subsets of RPark+1
p , we define

X = {(μ, λ(1), · · · , λ(k)) | (∗) and τ(p−s)%p(base(μ)) ⊇ roof(λ(1)),

1 ≤ ∀i < k, base(λ(i)) ⊇ roof(λ(i+1))},
Y = {(μ, λ(1), · · · , λ(k))∈(Parp-core)k+1 | (∗) and τ(p−s)%p(μ) ⊇ λ(1) ⊇ · · · ⊇ λ(k)},
Z = {(μ, λ(1), · · · , λ(k)) | (∗) and shifts(μ) ⊇ λ(1) ⊇ · · · ⊇ λ(k)},
Z ′ = {(μ, λ(1), · · · , λ(k)) ∈ (Parp-core)k+1 | (∗) and shifts(μ) ⊇ λ(1) ⊇ · · · ⊇ λ(k)},

where (∗) means the condition wts(μ) +
∑k

i=1 wt0(λ
(i)) = Λ− λp

�,s. Then, we have

X = Y = Z = Z ′.

Proof. First, observe that (∗) implies μ ⊆ (��+s) and λ(i) ⊆ ((�+ s)�) for 1 ≤ i ≤ k.
Especially, (∗) implies μ, λ(1), · · · , λ(k) ∈ Parp-core. By (a) above, X = Y and
Z = Z ′.

When s = 0, it is clear that Y = Z ′. Assume 0 < s < p. Note that τp−s(μ) ⊇ λ(1)

if and only if shifts(μ) ⊇ λ(1) and (∞p−s, μ) ⊇ λ(1). By λ(1) ⊆ ((�+ s)�), the latter
condition is automatically satisfied. Thus, we get Y = Z ′. �
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In summary, we now know that m
A

(1)
p−1

(Λ,Λ− λp
�,s) = #Z.

Definition 2.5. Let {βb | b ∈ Z} be formal linearly independent elements over Z.

(a) for p ≥ 2, we define a map (where
⊕

i∈Z/pZ Zαi is a root lattice of ŝlp =

g(A
(1)
p−1)) by

Tp :
⊕
b∈Z

Zβb −→
⊕

i∈Z/pZ

Zαi, βb 	−→ αb+pZ,

(b) for � ≥ 1 and s ≥ 0, we define

νp�,s = β−�+1 + · · ·+ (�− 2)β−2 + (�− 1)β−1

+ �β0 + · · ·+ �βs + (�− 1)βs+1 + (�− 2)βs+2 + · · ·+ β�+s−1.

Corollary 2.6. We have Z = Z ′′ where as subsets of RPark+1
p we define

Z ′′ = {(μ, λ(1), · · · , λ(k)) ∈ (Parp-core)k+1 | (∗∗) and shifts(μ) ⊇ λ(1) ⊇ · · · ⊇ λ(k)}

where (∗∗) means the condition
∑

(i,j)∈μ βs−i+j +
∑k

a=1

∑
(i,j)∈λ(a) β−i+j = νp�,s.

Proof. The conditions 0 ≤ s < p and 1 ≤ � ≤ �p−s
2 � imply Tp(ν

p
�,s) = λp

�,s. Thus,

Z ′′ ⊆ Z. The reverse inclusion follows from the fact that for (μ, λ(1), · · · , λ(k)) ∈ Z
we have μ ⊆ (��+s) and λ(i) ⊆ ((�+s)�) for 1 ≤ i ≤ k as in the proof of Proposition
2.4. �

2.3. Plane partitions. Recall that a 2-dimensional array of non-negative integers
π = (πij)i,j≥1 is a plane partition if πij ≥ πi+1,j , πi,j+1 for i, j ≥ 1 and the support
{(i, j) ∈ Z≥1 × Z≥1 | πij > 0} is a finite set. We denote by PP the set of plane
partitions.

Definition 2.7. For a plane partition π, we define

wt(π) =
∑
a≥1

∑
(i,j)∈π∗,a

βj−i

as an element of
⊕

b∈Z Zβb where π∗,j = (π1j , π2,j , · · · ) ∈ Par.

Clearly, we have (see (2.1))

Tp(wt(π)) =
∑
a≥1

(Λ0 − wt0(π∗,a)).(2.2)

Recall a famous bijection (that appears most frequently in proving MacMahon
plane partition generating functions (see [St2, Corollary 7.20.3]))

Π :
⊔

λ∈Par

CSPP(λ)× CSPP(λ) ∼−−→PP .(2.3)

The correspondence (P,Q) 	→ Π(P,Q) is briefly described as follows (for a detailed
explanation including an example, see [St2, §7.20]):

Let pa, qa ∈ Par be the a-th columns of P and Q. Then, the a-th
column of Π(P,Q) is a partition given by the Frobenius notation
ρ(pa, qa).
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We get Lemma 2.8 because we have∑
(i,j)∈ρ(pa,qa)

βj−i =
∑
i≥0

#pa>i · βi +
∑
i<0

#qa>−i · βi

where #r>b is the number of parts of r that are larger than b for r ∈ {pa, qa} and
b ∈ Z.

Lemma 2.8. Let P,Q ∈ CSPP(λ) for some λ ∈ Par. For π = Π(P,Q), we have

λ1 = �(trλ) = max{j ≥ 1 | π∗,j �= ∅},

wt(π) =
∑
i≥0

#P>i · βi +
∑
i<0

#Q>−i · βi

where #R>i is the number of boxes of R whose number is larger than i for R ∈
{P,Q}.

Note that in the setting of Lemma 2.8, we have

(a) the coefficient of β0 in wt(π) is |λ|,
(b) P,Q ∈ RST(λ) if and only if wt(π) = β−|λ|+1 + 2β−|λ|+2 + · · · + |λ|β0 + · · · +

2β|λ|−2 + β|λ|−1.

Proposition 2.9. The bijection Π (see (2.3)) gives a bijection

Π ◦ swap ◦(tr(·)× tr(·))|V2
: V2

∼−−→V3, (P,Q) 	−→ Π(trQ, trP ),

where β = β−�−s+1 + 2β−�−s+2 + · · ·+ (�+ s)β0 + · · ·+ 2β�+s−2 + β�+s−1 and

V3 = {π ∈ PP | π∗,1 ⊇ (s�+s),wt(π) = β, π∗,k+2 = ∅}.

Proof. Take (P,Q) ∈ V2. Because the first column of trP contains �+ s, · · · , �+ 1,
we see Π(trQ, trP )∗,1 ⊇ (s�+s) by the construction of Π. Thus, Π(trQ, trP ) ∈ V3 by
Lemma 2.8.

Conversely, take π ∈ V3. Since Π is a bijection, there are unique λ ∈ Par and
P,Q ∈ CSPP(λ) such that π = Π(trQ, trP ). By Lemma 2.8, |λ| = �+s, �(λ) ≤ k+1
and P,Q ∈ RST(λ). Observe that wt(π) = β implies π∗,1 ⊆ ((� + s)�+s). Thus,
(s�+s) ⊆ π∗,1 ⊆ ((�+ s)�+s). From this, we easily see that all �+ s, · · · , �+ 1 must
appear in the first row of P . In other words, (P,Q) ∈ V2. �

In §3, we will use a symmetry that obviously follows from the construction of Π.

Lemma 2.10. For λ ∈ Par and P,Q ∈ CSPP(λ), put π = Π(P,Q), π′ = Π(Q,P ).
Then, π′

∗,i =
tr(π∗,i) for i ≥ 1.

2.4. Proof of Theorem 1.6. Let us define maps Φ and Ψ by

Φ : V3 −→ Z, π 	−→ (μ, π∗,2, π∗,3, · · · , π∗,k+1),(2.4)

Ψ : Z −→ V3, (μ′, λ′(1), · · · , λ′(k)) 	−→ π′,(2.5)

where (note that (s�+s) ⊆ π∗,1 ⊆ ((�+ s)�+s) as in the proof of Proposition 2.9 and

μ′ ⊆ (��+s), λ′(a) ⊆ ((�+ s)�) for 1 ≤ a ≤ k as in the proof of Corollary 2.6)

(a) μ = (ν1 − s, ν2 − s, · · · , ν�+s − s) for ν = π∗,1,

(b) π′
∗,a+1 = λ′(a) for 1 ≤ a ≤ k and π′

∗,1 = (μ1 + s, · · · , μ�+s + s).

In §2.5, we show that both Φ and Ψ are well defined. This completes the proof
because by construction Φ and Ψ are mutually inverse of each other.



PATTERN AVOIDANCE IN WEIGHT MULTIPLICITIES 23

2.5. Well-definedness of maps Φ and Ψ. As a preparation, a direct calculation
shows

β − β� = νp�,s(2.6)

where β =
∑

(i,j)∈(�+s)�+s βj−i and β� =
∑

(i,j)∈(s�+s) βj−i for � ≥ 1, s ≥ 0 (see

Definition 2.5 and Proposition 2.9).
To prove the well-definedness of Φ (resp. Ψ), it is enough to show

wts(μ) +

k∑
a=1

wt0(π∗,a+1) = Λ− λp
�,s (resp. wt(π′) = β)

in the situation of (2.4) (resp. (2.5)). A check for it is shown in §2.5.1 (resp. §2.5.2).

2.5.1. By Λ0−wt0(ν) = (Λs−wts(μ))+
∑

(i,j)∈(s�+s) α(j−i)+pZ, (2.2) and Tp(ν
p
�,s) =

λp
�,s,

wts(μ) +

k∑
a=1

wt0(π∗,a+1) = Λ− Tp(β) +
∑

(i,j)∈(s�+s)

α(j−i)+pZ

= Λ− Tp(β − β�) = Λ− λp
�,s.

2.5.2. By Corollary 2.6 and (2.6),

wt(π′) = β� +
∑

(i,j)∈μ′

β(s+j)−i +
k∑

a=1

∑
(i,j)∈λ′(a)

βj−i = β.

3. Proof of Theorem 1.7

In this section, p, k, � are as in Theorem 1.7, i.e., p ≥ 2, k ≥ 1, 1 ≤ � ≤ �p/2�. As

in §2, we keep identifying RParp with B(Λ0) as A
(1)
p−1-crystal through Misra-Miwa

realization and use results in §2 substituting s = 0.

3.1. Mullineux involution.

Definition 3.1 (see [Mat, 6.42]). For each b ∈ B(Λ0) = RParp of the form b =

f̃ij · · · f̃i1∅ for some i1, · · · , ij ∈ Z/pZ, M(b) = f̃−ij · · · f̃−i1∅ is well defined.

As in [AKT, Proposition 5.12], there is a crystal morphism Sh : B(Λ0) → B(hΛ0)
for h ≥ 1 with certain properties. Let us briefly recall what will be needed. Under
the canonical embedding B(hΛ0) ↪→ B(Λ0)

⊗h, we can write Sh(λ) of the form

Sh(λ) = λ(1) ⊗ · · · ⊗ λ(h).(3.1)

Denoting (3.1) as

Sh(λ)
1/h = (λ(1))⊗1/h ⊗ · · · ⊗ (λ(h))⊗1/h

and replacing an occurrence of (μ⊗1/h)⊗k with μ⊗k/h, we can write

Sh(λ)
1/h = ν⊗a1

1 ⊗ ν⊗a2−a1
2 ⊗ · · · ⊗ ν⊗1−as−1

s .(3.2)

Here 0 < a1 < · · · < as−1 < 1 in Q and ν1, · · · , νs ∈ RParp are pairwise distinct.
As in [AKT, Theorem 5.13], for any λ ∈ RParp, the right hand side of (3.2) is

stable for any sufficiently divisible h ≥ 1. Furthermore,

(a) ν1, ν2, · · · , νs ∈ Parp-core [AKT, Theorem 5.13.(1)],
(b) ν1 � ν2 � · · · � νs [AKT, Theorem 5.14],
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(c) ν1 = roof(λ), νs = base(λ) [AKT, Definition 5.17, Corollary 6.4, Corollary 8.5],
(d) for any sufficiently divisible h, we have (see [AKT, Proof of Proposition 5.21])

Sh(M(λ))1/h = (trν1)
⊗a1 ⊗ (trν2)

⊗(a2−a1) ⊗ · · · ⊗ (trνs)
⊗(1−as−1).(3.3)

Corollary 3.2 ([AKT, Proposition 5.21]). For any λ ∈ RParp, we have base(M(λ))
= trbase(λ) and roof(M(λ)) = trroof(λ).

Corollary 3.3. For any λ ∈ Parp-core, we have M(λ) = trλ.

Remark 3.4. The involution M : RParp ∼−−→RParp is known as Mullineux involu-
tion in modular representation theory of symmetric groups and Hecke algebras
(see [LLT, §7]). Under the identification via cellular algebra structure (see [Mat,
3.43])

RParp ∼−−→
⊔
n≥0

Irr(Mod(FpSn)), λ 	−→ Dλ
Fp
,

Ford-Kleshchev showed Dλ
Fp

⊗ signFp
∼= D

M(λ)
Fp

that was known as the Mullineux

conjecture. Here signF is the sign representation for a field F. It is a classical

result that Sλ
Q ⊗ signQ

∼= S
trλ
Q where {Sλ

Q | λ ∈ Par(n)} = Irr(Mod(QSn)) are the
classical Specht modules. (3.3) says that choosing an appropriate model of “Young
diagram”, - ⊗ signF is always given by transposition of Young diagram even over
positive characteristics (for Hecke algebras, see [AKT, §5]).
3.2. Diagram automorphisms and orbit Lie algebras. Let A = (aij)i,j∈I be
a symmetrizable GCM with a corresponding Kac-Moody Lie algebra g = g(A).

A diagram automorphism ω : I ∼−−→ I is a bijection such that aω(i),ω(j) = aij for
i, j ∈ I. For a symmetrizable GCM with a diagram automorphism, the orbit Lie
algebra ǧ = g(Ǎ), which is again a Kac-Moody Lie algebra, is defined as follows
(see [FSS, §2.2]):
(i) put cij =

∑Nj−1
k=0 ai,ωk(j) for i, j ∈ I where Ni = #{ωk(i) | k ∈ Z},

(ii) set Ǐ = {i ∈ I/ω | cii > 0} and Ǎ = (ǎij := 2cij/cjj)i,j∈Ǐ .

In our case of A = A
(1)
p−1 = (2δij − δi+1,j − δi−1,j)i,j∈Z/pZ and I = Z/pZ, we

adapt

ω : Z/pZ ∼−−→Z/pZ, i 	−→ −i,

as a diagram automorphism. Then, the orbit Lie algebra is ǧ = g(Ǎ) where Ǎ =

A
(2)
p−1 (resp. D

(2)
1+p/2) depending on p being odd (resp. even). Recall that

δ̌ =

{
2α̌0 + · · ·+ 2α̌(p−3)/2 + α̌(p−1)/2, (Ǎ = A

(2)
p−1),

α̌0 + · · ·+ α̌p/2, (Ǎ = D
(2)
1+p/2).

(3.4)

We identify the set {i ∈ I/ω | cii > 0} above with

Ǐ =

{
{0, 1, · · · , (p− 1)/2}, (Ǎ = A

(2)
p−1),

{0, 1, · · · , p/2}, (Ǎ = D
(2)
1+p/2).

For i ∈ Ǐ, a direct calculation shows

cii =

{
1 (p ≡ 1 (mod 2) and i = (p− 1)/2),

2 (otherwise).
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As in Theorem 1.7, Lie theoretic objects associated with ǧ are written with ˇ
attached.

3.3. Naito-Sagaki’s fixed points crystals. Let Bn be the connected component
in RParnp

∼= B(Λ0)
⊗n that is isomorphic to B(nΛ0) as a g-crystal for n ≥ 1. By

Theorem 2.3,

Bn = {(λ(1), · · · , λ(n)) ∈ RParnp | 1 ≤ ∀i < n, base(λ(i)) ⊇ roof(λ(i+1))}.

By virtue of Naito-Sagaki [NS1, Theorem 4.4], the set of fixed points BMn

n has a
ǧ-crystal structure that is isomorphic to B(nΛ̌0). All we need is the correspndence
on weights:

the weight w̌t(b) of b = (x1, · · · , xn) ∈ BMn

n as a ǧ-crystal is given
by

w̌t(b) = nΛ̌0 −
∑
i∈Ǐ

miα̌i ⇐⇒
n∑

i=1

wt0(xi) = nΛ0 −
∑
i∈Ǐ

2mi

cii

Ni−1∑
r=1

αι(ωr(i))(3.5)

where ι : Ǐ ↪→ I, i 	→ i+ pZ is an injection (see also [NS2, (1.2.2)]).

Since � − 1 < (p − 1)/2 (resp. � − 1 < p/2) for odd p (resp. even p), the right
hand side of (3.5) is equal to (k + 1)Λ0 − λp

�,0 whenever the left hand side of (3.5)
is given by

γ� = (k + 1)Λ̌0 − �α̌0 − (�− 1)α̌1 − · · · − α̌�−1

for n = k+1. Thus, we have mǍ((k+1)Λ̌0, γ�) = #(Z ′Mk+1

) where (see Proposition
2.4)

Z ′ = {(λ(1) ⊇ · · · ⊇ λ(k+1)) ∈ (Parp-core)k+1 |
k+1∑
i=1

wt0(λ
(i)) = (k + 1)Λ0 − λp

�,0}.

3.4. Proof of Theorem 1.7. In §2.4, we presented bijections

V2
∼−−→V3

∼−−→Z = Z ′, (P,Q) 	−→ π := Π(trQ, trP ) 	−→ (π∗,1, · · · , π∗,k+1),

where V2 =
⊔

λ∈Par(�)
�(λ)≤k+1

RST(λ)2 and V3 = {π ∈ PP | wt(π) =
∑

(i,j)∈�� βj−i, π∗,k+2

= ∅}.
By Corollary 3.3 and Lemma 2.10, we have

#(Z ′Mk+1

) =
∑

λ∈Par(�)
�(λ)≤k+1

#RST(λ).

This is equal to
∑

λ∈Par(�),�(λ)≤k+1#RST(λ) and it is equinumerous to ((k+2), (k+

1), k, · · · , 1)-avoiding involution of � by Lemma 2.1 and Lemma 2.2. This completes
the proof of Theorem 1.7 (b).

We now know that mǍ((k+1)Λ̌0, γ�) > 0. Thus, to prove Theorem 1.7 (a), it is

enough to show that mǍ((k + 1)Λ̌0, γ� + δ̌) = 0 (see Proposition 1.1). This follows
from Proposition 3.5 and the condition �− 1 < (p− 1)/2 (resp. �− 1 < p/2) when
p is odd (resp. p is even).
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Proposition 3.5 ([Kac, Proposition 12.5.(a)]). Let A be an affine GCM. For Λ ∈
P+
A ,

PA(Λ) = W · {λ ∈ P+
A | λ ≤ Λ}.

4. Appendix: on the number of max
A

(1)
p−1

(kΛ0) ∩ P+

A
(1)
p−1

We prove a conjecture of Jayne-Misra on the number #(max
A

(1)
p−1

(kΛ0)∩P+

A
(1)
p−1

).

Proposition 4.1 ([MR1, Conjecture 3.9]). For k ≥ 1 and p ≥ 2,

#(max
A

(1)
p−1

(kΛ0) ∩ P+

A
(1)
p−1

) =
1

p+ k

∑
dZ⊇kZ,pZ

φ(d)

(
(p+ k)/d

k/d

)
where φ(d) = #(Z/dZ)× is Euler’s totient function.

4.1. Proof of Lemma 1.4. Recall that p ≥ 2, k ≥ 1, 0 ≤ s < p and Λ = kΛ0+Λs.

Depending on s �= 0 or not, we define the set S
(p,s)
k as follows:

S
(p,0)
k = {(xi)

p
i=0 ∈ Zp+1 | x0 = xp = 0, x1 + xp−1 ≤ k,

0 < ∀i < p,−xi−1 + 2xi − xi+1 ≥ 0},

S
(p,s)
k = {(xi)

p
i=0 ∈ Zp+1 | x0 = xp = 0, x1 + xp−1 ≤ k − 1,

0 < ∀i < p, δi,s − xi−1 + 2xi − xi+1 ≥ 0}.

As in [Ts1, §3.1,§3.2], the following gives a bijection:

S
(p,s)
k

∼−−→max
A

(1)
p−1

(Λ) ∩ P+

A
(1)
p−1

, (x0, · · · , xp) 	−→ Λ +

p−1∑
i=0

(xi + q0)αi,

where q0 = max{q ≤ 0 | 1 ≤ ∀i < p, xi + q ≤ 0 and 1 ≤ ∃i < p, xi + q = 0}. Clearly
S
(p,s)
k ⊆ S

(p,s)
k+1 and q0 does not depend on k, thus we deduce Lemma 1.4.

4.2. q-binomial coefficients and q-Lucas theorem. Let
[
a
b

]
= [a]!/([b]![a− b]!)

be a q-binomial coefficient for 0 ≤ b ≤ a and [c]! =
∏c

n=1(q
n − 1)/(q − 1).

Proposition 4.2 ([St1, pp.66]). For any j, k ≥ 0, we have
∑

λ∈Par
�(λ)≤j,λ1≤k

q|λ| =[
k+j
j

]
.

The following congruent property for q-binomial coefficients is known as q-Lucas
theorem (see also [St1, Exercise 14 of Chapter 1] for Lucas theorem for binomial
coefficients).

Proposition 4.3 ([Sag, Theorem 2.2]). Let ζ be a primitive d-th root of unity
where d ≥ 1. For any n, j ≥ 0,[

n

j

]∣∣∣
q=ζ

=

(
�n/d�
�j/d�

)
·
[
n%d

j%d

]∣∣∣
q=ζ

.
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4.3. Proof of Proposition 4.1. As in §4.1, #(max
A

(1)
p−1

(kΛ0)∩P+

A
(1)
p−1

) = #S
(p,0)
k .

Let us define sets T and U as follows:

T = {(y1, · · · , yp) ∈ Zp | y1 ≥ · · · ≥ yp, y1 + · · ·+ yp = 0, y1 − yp ≤ k},
U = {(λ1, · · · , λp−1) ∈ Zp−1 | k ≥ λ1 ≥ · · ·λp−1 ≥ 0, λ1 + · · ·+ λp−1 ∈ pZ}.
The following maps are bijections:

S
(p,0)
k

∼−−→T, (x0, · · · , xp) 	−→ (x1 − x0, · · · , xp − xp−1),

T ∼−−→U, (y1, · · · , yp) 	−→ (y1 − yp, · · · , yp−1 − yp).

By Proposition 4.2, we have

#U =
1

p

∑
ζp=1

[
k + p− 1

p− 1

]∣∣∣
q=ζ

.

Let ζ be a primitive d-th root of unity for some 1 ≤ d ≤ p with dZ � p. Then,[
k + p− 1

p− 1

]∣∣∣
q=ζ

=

(
�(k + p− 1)/d�
�(p− 1)/d�

)[
(k + p− 1)%d

d− 1

]∣∣∣
q=ζ

(4.1)

by Proposition 4.3. The right hand side of (4.1) vanishes unless k + p − 1 ≡
d − 1 (mod d) ⇔ dZ � k. When dZ � k, the right hand side of (4.1) becomes(	(k+p−1)/d


	(p−1)/d

)
=

((k+p)/d−1
p/d−1

)
. Thus, we know that #(max

A
(1)
p−1

(kΛ0) ∩ P+

A
(1)
p−1

) =

#S
(p,0)
k = #U is equal to

1

p

∑
dZ⊇kZ,pZ

φ(d)

(
(p+ k)/d− 1

p/d− 1

)
=

1

p+ k

∑
dZ⊇kZ,pZ

φ(d)

(
(p+ k)/d

k/d

)
.
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