Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pattern avoidance seen in multiplicities of maximal weights of affine Lie algebra representations


Authors: Shunsuke Tsuchioka and Masaki Watanabe
Journal: Proc. Amer. Math. Soc. 146 (2018), 15-28
MSC (2010): Primary 17B67; Secondary 05A05
DOI: https://doi.org/10.1090/proc/13597
Published electronically: September 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the multiplicities of certain maximal weights of $ \mathfrak{g}(A^{(1)}_{n})$-modules are counted by pattern avoidance on words. This proves and generalizes a conjecture of Jayne-Misra. We also prove similar phenomena in types $ A^{(2)}_{2n}$ and $ D^{(2)}_{n+1}$. Both proofs are applications of Kashiwara's crystal theory.


References [Enhancements On Off] (What's this?)

  • [AKT] Susumu Ariki, Victor Kreiman, and Shunsuke Tsuchioka, On the tensor product of two basic representations of $ U_v(\widehat{\mathfrak{sl}}_e)$, Adv. Math. 218 (2008), no. 1, 28-86. MR 2409408, https://doi.org/10.1016/j.aim.2007.11.018
  • [CR] Joseph Chuang and Raphaël Rouquier, Derived equivalences for symmetric groups and $ \mathfrak{sl}_2$-categorification, Ann. of Math. (2) 167 (2008), no. 1, 245-298. MR 2373155, https://doi.org/10.4007/annals.2008.167.245
  • [FSS] Jürgen Fuchs, Bert Schellekens, and Christoph Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), no. 1, 39-97. MR 1403859
  • [Ful] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
  • [Kac] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [Kas] Masaki Kashiwara, Bases cristallines des groupes quantiques, Cours Spécialisés [Specialized Courses], vol. 9, Société Mathématique de France, Paris, 2002 (French). Edited by Charles Cochet. MR 1997677
  • [KLMW] V. Kreiman, V. Lakshmibai, P. Magyar, and J. Weyman, Standard bases for affine $ {\rm SL}(n)$-modules, Int. Math. Res. Not. 21 (2005), 1251-1276. MR 2146340, https://doi.org/10.1155/IMRN.2005.1251
  • [Lit] Peter Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math. 124 (1996), no. 2, 312-331. MR 1424313, https://doi.org/10.1006/aima.1996.0085
  • [LLT] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263. MR 1410572
  • [LM] Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854-878. MR 2351381, https://doi.org/10.1016/j.aim.2007.06.008
  • [MM] Kailash Misra and Tetsuji Miwa, Crystal base for the basic representation of $ U_q(\mathfrak{s}\mathfrak{l}(n))$, Comm. Math. Phys. 134 (1990), no. 1, 79-88. MR 1079801
  • [MR1] Rebecca L. Jayne and Kailash C. Misra, On multiplicities of maximal weights of $ \widehat{sl}(n)$-modules, Algebr. Represent. Theory 17 (2014), no. 4, 1303-1321. MR 3228490, https://doi.org/10.1007/s10468-014-9470-2
  • [MR2] R. Jayne and K. Misra, Lattice Paths, Young Tableaux, and Weight Multiplicities, arXiv:1508.06930
  • [Mat] Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316
  • [NS1] Satoshi Naito and Daisuke Sagaki, Standard paths and standard monomials fixed by a diagram automorphism, J. Algebra 251 (2002), no. 1, 461-474. MR 1900295, https://doi.org/10.1006/jabr.2001.9135
  • [NS2] Satoshi Naito and Daisuke Sagaki, Crystal bases and diagram automorphisms, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 321-341. MR 2074598
  • [Sag] Bruce E. Sagan, Congruence properties of $ q$-analogs, Adv. Math. 95 (1992), no. 1, 127-143. MR 1176155, https://doi.org/10.1016/0001-8708(92)90046-N
  • [St1] Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
  • [St2] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282
  • [Ts1] Shunsuke Tsuchioka, Catalan numbers and level 2 weight structures of $ A_{p-1}^{(1)}$, New trends in combinatorial representation theory, RIMS Kôkyûroku Bessatsu, B11, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, pp. 145-154. MR 2562491
  • [Ts2] Shunsuke Tsuchioka, Hecke-Clifford superalgebras and crystals of type $ D^{(2)}_l$, Publ. Res. Inst. Math. Sci. 46 (2010), no. 2, 423-471. MR 2722783, https://doi.org/10.2977/PRIMS/13

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B67, 05A05

Retrieve articles in all journals with MSC (2010): 17B67, 05A05


Additional Information

Shunsuke Tsuchioka
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan
Email: tshun@kurims.kyoto-u.ac.jp

Masaki Watanabe
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan
Email: mwata@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/proc/13597
Keywords: Weight multiplicities, affine Lie algebras, pattern avoidance, maximal weights, Kashiwara's crystal, Littelmann's path model, RSK correspondence, plane partitions, orbit Lie algebras, quantum binomial coefficients, categorification, Hecke algebras, symmetric groups, modular representation theory, Mullineux involution
Received by editor(s): November 10, 2015
Received by editor(s) in revised form: October 12, 2016
Published electronically: September 28, 2017
Additional Notes: The first author was supported in part by JSPS Kakenhi Grants 26800005.
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society