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ON A GENERAL MACLAURIN’S INEQUALITY

STEFANO FAVARO AND STEPHEN G. WALKER

(Communicated by Mourad E. H. Ismail)

Abstract. Maclaurin’s inequality provides a sequence of inequalities that in-
terpolate between the arithmetic mean at the high end and the geometric mean
at the low end. We introduce a similar interpolating sequence of inequalities
between the weighted arithmetic and geometric mean with arbitrary weights.

Maclaurin’s inequality arises for uniform weights. As a by-product we obtain
inequalities that may be of interest in the theory of Jacobi polynomials.

1. Introduction

The inequality between the arithmetic mean and the geometric mean, or briefly
the AM-GM inequality, is one of the most well-known inequalities in mathematical
analysis; see, e.g., Bullen [3] and Hardy et al. [8]. In particular, if x = (x1, . . . , xn)
is a collection of positive real numbers, for any n ≥ 1, then the AM-GM inequality
states that the arithmetic mean of x is greater than or equal to the geometric mean
of x, i.e.,

(1.1)
1

n

n∑
i=1

xi ≥
n∏

i=1

x
1
n

i .

The equality in (1.1) follows if and only if the xi’s are all equal. Maclaurin’s
inequality, first stated in Maclaurin [10], is a natural refinement of the AM-GM
inequality. Let

(1.2) Ek(x) =

[∑
1≤i1<i2<···<ik≤n xi1xi2 · · ·xik(

n
k

)
] 1

k

for any k = 1, . . . , n, where the numerator of (1.2) is the k-th elementary symmetric
polynomial in x, and the binomial coefficient in the denominator of (1.2) is the
number of terms in the numerator. Maclaurin’s inequality is the following chain of
inequalities,

(1.3) E1(x) ≥ E2(x) ≥ · · · ≥ En−1(x) ≥ En(x),

with the extreme terms E1(x) and En(x) being the arithmetic mean and the geo-
metric mean, respectively. The inequality (1.3) thus interpolates terms between
the left-hand side and the right-hand side of (1.1). Note that, as for the AM-GM
inequality, the equality in (1.3) follows if and only if the xi’s are all equal. See,
e.g., Bullen [3], Steel [11], Cvetkovski [4] for a detailed account on the Maclaurin’s
inequality.
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Among the numerous generalizations of the AM-GM inequality, the so-called
weighted AM-GM inequality certainly stands out. Again, we refer to the mono-
graphs by Bullen [3] and Hardy et al. [8] for details. Specifically, for any n ≥ 1
let x = (x1, . . . , xn) be a collection of positive real numbers and let (w1, . . . , wn)
be a collection of positive weights such that

∑
1≤i≤nwi = 1. Then, the weighted

AM-GM inequality is

(1.4)
n∑

i=1

wixi ≥
n∏

i=1

xwi
i .

The aim of this paper is to introduce an interpolative sequence of inequalities
between the two sides of (1.4), in the same way as (1.3) is an interpolative sequence
of inequalities between the two sides of (1.1). Let m > 0 such that ri = mwi is an
integer for all i = 1, . . . , n, and set r = (r1, . . . , rn). Then, for any positive integer
l define

(1.5) Tl(x, r) =

⎡
⎣ ∑
(l1,...,ln)∈Pn,l

∏n
i=1

(
ri
li

)
xli
i(

m
l

)
⎤
⎦
1/l

,

where Pn,l = {(l1, . . . , ln) : li ≥ 0 and
∑

1≤i≤n li = l}. In particular, for l = 1 and
l = m,

T1(x, r) =
n∑

i=1

wixi

and

Tm(x, r) =

n∏
i=1

xwi
i ,

respectively, so that T1(x, r) ≥ Tm(x, r) is the weighted AM-GM inequality, and
if in addition wi = 1/n for any i = 1, . . . , n, then it reduces to the AM-GM
inequality. On the other hand, Maclaurin’s inequality arises when wi = 1/n, for
any i = 1, . . . , n, and m = n. The next theorem states our general Maclaurin’s
inequality.

Theorem 1.1. For n ≥ 1 let x = (x1, . . . , xn) such that xi > 0 and (w1, . . . , wn)
such that wi > 0 and

∑
1≤i≤nwi = 1. If r = (r1, . . . , rn), with ri = mwi being an

integer for m > 0, then

(1.6) T1(x, r) ≥ T2(x, r) ≥ · · · ≥ Tm−1(x, r) ≥ Tm(x, r).

The proof of Theorem 1.1 is given in Section 2. In particular, we start by showing
that the key step consists in proving Theorem 1.1 for n = 2. The general case then
follows by an inductive argument. Hence most of Section 2 focuses on Theorem 1.1
for n = 2. Under the assumption n = 2 we have x1 and x2 and we assume without
loss of generality that x2 < x1. We then put t = x1/x2, so we aim to show that,
for t ≥ 1,

Tl((t, x2), (mw,m(1− w))) ≥ Tl+1((t, x2), (mw,m(1− w))),
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i.e.,

T ∗
l (t,mw) =

⎡
⎣ min{l,mw}∑
i=max{0,l−m(1−w)}

(
mw
i

)(
m(1−w)

l−i

)
(
m
l

) ti

⎤
⎦

1
l

(1.7)

≥

⎡
⎣ min{l+1,mw}∑
i=max{0,l+1−m(1−w)}

(
mw
i

)(
m(1−w)
l+1−i

)
(

m
l+1

) ti

⎤
⎦

1
l+1

= T ∗
l+1(t,mw)

for any w ∈ (0, 1) and m > 0 such that mw = 1, . . . ,m, and any l = 1, . . . ,m.
It is worth pointing out that T ∗

l (t,mw) can be represented in terms of Jacobi
polynomials; see, e.g., Erdélyi [5] and Szegő [12]. Indeed, for any real x, any reals
α and β, and any integer n, a Jacobi polynomial Pα,β

n (x) admits the finite-sum
representation

Pα,β
n (x) =

1

2n

n∑
i=0

(
n+ α

i

)(
n+ β

n− i

)
(x− 1)n−i(x+ 1)i.(1.8)

The proof of the inequalities (1.7) thus naturally leads to introducing a collection
of inequalities for Jacobi polynomials that may be of separate interest in the theory
of orthogonal polynomials. In particular, if l ≤ mw and 0 ≥ l−m(1−w), we obtain
an inequality which is somehow reminiscent of the celebrated Turán inequality for
Jacobi polynomials introduced in Gasper [6] and [7]. See also Baricz [1], Baricz [2]
and references therein for recent developments on the Turán inequality for special
functions.

2. Proof of Theorem 1.1

As anticipated in the Introduction, we start by showing that it is sufficient to
prove Theorem 1.1 for n = 2. The general case then follows by an inductive
argument which relies on the fact that [Tl(x, t)]

l corresponds to the probability
generating function of the multivariate hypergeometric distribution with parameter
(n, r, l); see, e.g., Johnson et al. [9]. For the inductive argument to extend to all n,
we assume that Theorem 1.1 is true for n = 2, and hence, for x1 and x2 positive,
we have that

Tl((x1, x2), (r1, r2)) =

⎡
⎣ ∑
(l1,l2)∈P2,l

(
r1
l1

) (
r2
l2

)
(
m
l

) xl1
1 x

l2
2

⎤
⎦

1
l

is decreasing in l. Let

(2.1) Tl((x1, x2, x3), (r1, r2, r3)) =

⎡
⎣ ∑
(l1,l2,l3)∈P3,l

(
r1
l1

) (
r2
l2

) (
r3
l3

)
(
m
l

) xl1
1 x

l2
2 x

l3
3

⎤
⎦

1
l

.

In particular, if now we define t1 = x1/x3 and t2 = x2/x3, then we can write (2.1)
as follows,

Tl((t1, t2, x3), (r1, r2, r3)) = x3

⎡
⎣ ∑
(l1,l2,l3)∈P3,l

(
r1
l1

) (
r2
l2

) (
r3
l3

)
(
m
l

) tl11 t
l2
2

⎤
⎦

1
l

,
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i.e.,

Tl((t1, t2, x3), (r1, r2, r3)) = x3

{
E

[
tL1
1 tL2

2

]} 1
l

,

where E denotes the expected value with respect to the random variable (L1, L2)
distributed according to a multivariate hypergeometric distribution with parameter
(3, (r1, r2, r3), l) and with m = r1 + r2 + r3. The marginal distribution of (L1, L2)
is also a multivariate hypergeometric distribution with parameter (2, r1,m − r1, l)
and hence

Tl((t1, t2, x3), (r1, r2, r3)) = x3

⎡
⎣ ∑
(l1,l2)∈P2,l

(
r1
l1

)(
m−r1

l2

)
(
m
l

) tl11 t
l2
2

⎤
⎦

1
l

,

which is decreasing in l by assumption. These arguments extend to all n using
marginal properties of the multivariate hypergeometric distribution. Hence the key
is to prove Theorem 1.1 for n = 2, i.e., (1.7). According to the values of w, m and
l, in the next subsections we prove (1.7) for: C1) m(1 − w) ≥ l and mw ≥ l; C2)
m(1− w) ≥ l and mw ≤ l; C3) m(1− w) ≤ l and mw ≥ l; C4) m(1− w) ≤ l and
mw ≤ l.

2.1. Case C1). Note that l ≤ m(1−w) and l ≤ mw implies l ≤ m− l. We assume
w ≤ 1/2, and the case w > 1/2 follows by similar arguments. Under this set of
conditions for m, l and w, we write T ∗

l (t,mw) in terms of a Jacobi polynomial. For
any y < 0,

(2.2) T ∗
l (1− y,mw) =

(
mw
l

)(
m
l

) (−y)l
P

mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

) ,

with

(−y)l
P

mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

) =
l∑

i=0

(
mw
i

)(
m(1−w)

l−i

)
(
mw
l

) (1− y)i

≤
l+1∑
i=0

(
mw
i

)(
m(1−w)
l+1−i

)
(
mw
l+1

) (1− y)i(2.3)

= (−y)l+1
P

mw−l−1,m(1−w)−l−1
l+1

(
y−2
y

)
(
mw
l+1

)
because

(m(1−w)
l−i )
(mw

l )

(m(1−w)
l+1−i )
(mw
l+1)

=
(1− i+ l)(l −mw)

(l + 1)(−i+ l −m(1− w))
≤ 1

for any i = 0, . . . , l, and (1− y)l+1 ≥ 0. Indeed, 0 ≤ l + 1 − i ≤ l + 1 and
0 ≤ mw− l ≤ m(1−w)− l+ i from the set of conditions C1), and because 0 ≤ i ≤ l
and w ≤ 1/2. Note that

i) P
mw−l,m(1−w)−l
l ((y− 2)/y), as y ∈ (−∞, 0), is positive, monotone decreas-

ing and

lim
y→−∞

P
mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

) = 1;
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ii) (−y)lP
mw−l,m(1−w)−l
l ((y − 2)/y), as y ∈ (−∞, 0), is positive, monotone

decreasing and

lim
y→0−

(−y)l
P

mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

) =

(
m
l

)(
mw
l

) ≥ 1.

This follows from the definition of Jacobi polynomial in (1.8), and by the Vander-
monde identity. Also,

(−y)l+1
P

mw−l−1,m(1−w)−l−1
l+1

(
y−2
y

)
(
mw
l+1

) − (−y)l
P

mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

)(2.4)

=

l∑
i=0

(
mw

i

)[(
m(1−w)
l+1−i

)
(
mw
l+1

) −
(
m(1−w)

l−i

)
(
mw
l

)
]
(1− y)i + (1− y)l+1,

is positive and increasing in l. In other terms, the gap between the first term and
the second term appearing on the left-hand side of (2.4) is positive and it increases
as l increases. Accordingly, by combining this property with the inequality (2.3),
we have that, if

(−y)
P

mw−1,m(1−w)−1
1

(
y−2
y

)
(
mw
1

) ≤

⎡
⎣(−y)2

P
mw−1−1,m(1−w)−1−1
1+1

(
y−2
y

)
(
mw
1+1

)
⎤
⎦

1
2

,(2.5)

then

⎡
⎣(−y)l

P
mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

)
⎤
⎦

1
l

≤

⎡
⎣(−y)l+1

P
mw−l−1,m(1−w)−l−1
l+1

(
y−2
y

)
(
mw
l+1

)
⎤
⎦

1
l+1

.

(2.6)

The inequality (2.5) can be easily proved by means of (1.8). Indeed, (2.5) reduces
to the inequality (

1− 1

wy

)2

≤ −1− wy(y − 2) +m(−1 + wy)2

wy2(mw − 1)
,

i.e., (wy − 1)2(−w−1) ≤ −1 − wy(y − 2), which holds because 0 ≤ w ≤ 1/2. This
proves (2.6). Therefore, with respect to the probability generating function (2.2),
one has the inequalities:

i)

⎡
⎣(−y)l

P
mw−l,m(1−w)−l
l

(
y−2
y

)
(
mw
l

)
⎤
⎦

1
l

≤

⎡
⎣(−y)l+1

P
mw−l−1,m(1−w)−l−1
l+1

(
y−2
y

)
(
mw
l+1

)
⎤
⎦

1
l+1

,

(2.7)

ii)

(2.8)

[(
mw
l

)(
m
l

)
] 1

l

≥
[(

mw
l+1

)
(

m
l+1

)
] 1

l+1

,
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i.e.,

(2.9)
mw!(m− l)!

m!(mw − l)!
≥

(
l −mw

l −m

)l

.

In particular, (2.9) follows by a straightforward induction on l. The left-hand side
of (2.7) increases as l increases, whereas the left-hand side of (2.8) decreases as l
increases. In order that the product of these two functions decreases as l increases,
we have to prove

(2.10)

[
(−y)l

P
mw−l,m(1−w)−l
l ( y−2

y )
(mw

l )

] 1
l

[
(−y)l+1

P
mw−l−1,m(1−w)−l−1
l+1 ( y−2

y )
(mw
l+1)

] 1
l+1

≥

[
(mw
l+1)
( m
l+1)

] 1
l+1

[
(mw

l )
(ml )

] 1
l

.

The left-hand side of (2.10) is bounded in (−∞, 0) and monotone increasing. In
particular, [

(ml )
(mw

l )

] 1
l

[
( m
l+1)
(mw
l+1)

] 1
l+1

= lim
y→0−

[
(−y)l

P
mw−l,m(1−w)−l
l ( y−2

y )
(mw

l )

] 1
l

[
(−y)l+1

P
mw−l−1,m(1−w)−l−1
l+1 ( y−2

y )
(mw
l+1)

] 1
l+1

≤

[
(−y)l

P
mw−l,m(1−w)−l
l ( y−2

y )
(mw

l )

] 1
l

[
(−y)l+1

P
mw−l−1,m(1−w)−l−1
l+1 ( y−2

y )
(mw
l+1)

] 1
l+1

,

so that [T ∗
l (1− y,mw)]1/l ≥ [T ∗

l+1(1− y,mw)]1/(l+1) for any y < 0. This completes
the proof under the set of conditions C1) and w ≤ 1/2. We now consider the case
w ≥ 1/2. For any y < 0,

T ∗
l

(
y − 1

y
,mw

)
=

(
m(1−w)

l

)(
m
l

) 1

(y)l
P

m(1−w)−l,mw−l
l (−1 + 2y)(

m(1−w)
l

)
and, along lines similar to the proof of the case w ≤ 1/2, we obtain the following
inequalities:

i) [
1

(y)l
P

m(1−w)−l,mw−l
l (−1 + 2y)(

m(1−w)
l

)
] 1

l

(2.11)

≤
[

1

(y)(l+1)

P
m(1−w)−l−1,mw−l−1
l+1 (−1 + 2y)(

m(1−w)
l+1

)
] 1

l+1

,

ii)

(2.12)

[(
m(1−w)

l

)(
m
l

)
] 1

l

≥
[(

m(1−w)
l+1

)
(

m
l+1

)
] 1

l+1

.
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By combining (2.11) and (2.12) in the same way presented under the assumption
w ≤ 1/2, we obtain [T ∗

l ((y − 1)/y,mw)]1/l ≥ [T ∗
l+1((y − 1)/y,mw)]1/(l+1) for any

y < 0. This completes the proof under the set of conditions C1), that is, m(1−w) ≥
l and mw ≥ l.

2.2. Case C2). Note that mw ≤ m− l and mw ≤ l implies w ≤ 1/2. Under this
set of conditions on m and l, we write T ∗

l (t,mw) as a Jacobi polynomial. For any
y < 0,

(2.13) T ∗
l (1− y,mw) =

(
l

mw

)(
m
mw

) (−y)mw
P

l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

) ,

with

P
l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

)(2.14)

≥ y

y − 1

P
l−mw,m(1−w)−l−1
mw

(
y−2
y

)
(

l
mw

) +
1

1− y

P
l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
=

y

y − 1

⎛
⎝P

l−mw,m(1−w)−l−1
mw

(
y−2
y

)
(

l
mw

) −
P

l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
⎞
⎠

+
P

l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
≥

P
l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

) ,

where the first inequality in (2.14) arises from equation (34) in Erdélyi [5], and the
second inequality in (2.14) arises from the definition of Jacobi polynomial in (1.8).
Indeed,

P
l−mw,m(1−w)−l−1
mw

(
y−2
y

)
(

l
mw

) =

(
−1

y

)mw mw∑
i=0

(
l
i

)(
m−l−1
mw−i

)
(

l
mw

) (1− y)i

and

P
l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

) =

(
−1

y

)mw mw∑
i=0

(
l+1
i

)(
m−l−1
mw−i

)
(
l+1
mw

) (1− y)i,

where

(2.15)

(li)(
m−l−1
mw−i )

( l
mw)

(l+1
i )(

m−l−1
mw−i )

(l+1
mw)

=
1− i+ l

1 + l −mw
≥ 1

for any index i = 0, . . . ,mw. Indeed, one has 1 + l − i ≥ 1 + l −mw ≥ 0 from the
set of conditions C2), and because 0 ≤ i ≤ mw. Hence the inequality displayed in
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(2.14) leads to

(−y)mw
P

l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

) ≥ (−y)mw
P

l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
and⎡
⎣(−y)mw

P
l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

)
⎤
⎦

1
l

≥

⎡
⎣(−y)mw

P
l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
⎤
⎦

1
l+1

,

where

i) P
mw−l,m(1−w)−l
l ((y− 2)/y), as y ∈ (−∞, 0), is positive, monotone decreas-

ing and

lim
y→−∞

P
l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

) = 1,

ii) (−y)mwP
l−mw,m(1−w)−l
mw ((y − 2)/y), as y ∈ (−∞, 0) is positive, monotone

decreasing and

lim
y→0−

(−y)mw
P

l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

) =

(
m
mw

)
(

l
mw

) ≥ 1.

This follows from (1.8) and by a direct application of the Vandermonde identity.
Therefore, with respect to the probability generating function (2.13), one has the
following inequalities:

i)

⎡
⎣(−y)mw

P
l−mw,m(1−w)−l
mw

(
y−2
y

)
(

l
mw

)
⎤
⎦

1
l

≥

⎡
⎣(−y)mw

P
l+1−mw,m(1−w)−l−1
mw

(
y−2
y

)
(
l+1
mw

)
⎤
⎦

1
l+1

,

(2.16)

ii)

(2.17)

[(
l

mw

)(
m
mw

)
] 1

l

≤
[(

l+1
mw

)(
m
mw

)
] 1

l+1

,

i.e.,

(2.18)
l!(m(1− w))!

m!(l −mw)!
≤

(
1 + l

1 + l −mw

)l

.

In particular, (2.18) follows by a straightforward induction on l. The left-hand side
of (2.16) decreases as l increases, whereas the left-hand side of (2.17) increases as l
increases. In order that the product of these two functions decreases as l increases,
we have to prove the following

(2.19)

[
( l
mw)
( m
mw)

] 1
l

[
(l+1
mw)
( m
mw)

] 1
l+1

≥

[
(−y)mw P l+1−mw,m(1−w)−l−1

mw ( y−2
y )

(l+1
mw)

] 1
l+1

[
(−y)mw

P
l−mw,m(1−w)−l
mw ( y−2

y )
( l
mw)

] 1
l

.
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The right-hand side of (2.19) is bounded in (−∞, 0) and monotone decreasing. In
particular,

[
( l
mw)
( m
mw)

] 1
l

[
(l+1
mw)
( m
mw)

] 1
l+1

= lim
y→0−

[
(−y)mw P l+1−mw,m(1−w)−l−1

mw ( y−2
y )

(l+1
mw)

] 1
l+1

[
(−y)mw

P
l−mw,m(1−w)−l
mw ( y−2

y )
( l
mw)

] 1
l

≥

[
(−y)mw P l+1−mw,m(1−w)−l−1

mw ( y−2
y )

(l+1
mw)

] 1
l+1

[
(−y)mw

P
l−mw,m(1−w)−l
mw ( y−2

y )
( l
mw)

] 1
l

,

so that we have the desired inequality [T ∗
l (1− y,mw)]1/l ≥ [T ∗

l+1(1− y,mw)]1/(l+1)

for any y < 0. This completes the proof under the set of conditions C2), that is,
m(1− w) ≥ l and mw ≤ l.

2.3. Case C3). Note that m(1− w) ≤ l and m(1− w) ≤ m − l implies w ≥ 1/2.
Under this set of conditions on m and l, we write T ∗

l (t,mw) as a Jacobi polynomial.
For any y < 0,

(2.20) T ∗
l (1− y,mw) =

(
−y

1− y

)m(1−w)

(1− y)l
P

mw−l,l−m(1−w)
m(1−w)

(
y−2
y

)
(

m
mw

) ,

with

P
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)(2.21)

= yP
mw−l−1,l−m(1−w)
m(1−w)

(
y − 2

y

)
+ (1− y)P

mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)

= y

(
P

mw−l−1,l−m(1−w)
m(1−w)

(
y − 2

y

)
− P

mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

))

+ P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)

≥ P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)
,

where the first equality in (2.21) arises from equation (34) in Erdélyi [5], and the
inequality in (2.21) arises from the definition of Jacobi polynomial in (1.8). Indeed,

P
mw−l−1,l−m(1−w)
m(1−w)

(
y − 2

y

)

=

(
−1

y

)m(1−w) m(1−w)∑
i=0

(
m− l − 1

i

)(
l

m(1− w)− i

)
(1− y)i
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and

P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)

=

(
−1

y

)m(1−w) m(1−w)∑
i=0

(
m− l − 1

i

)(
l + 1

m(1− w)− i

)
(1− y)i,

where

(2.22)

(
m−l−1

i

)(
l+1

m(1−w)−i

)
(
m−l−1

i

)(
l

m(1−w)−i

) =
l + 1

1 + i+ l −m(1− w)
≥ 1

for any index i = 0, . . . ,m(1−w). Indeed, one has l+1 ≥ 1+ i+ l−m(1−w) ≥ 0
from the set of conditions C3), and because 0 ≤ i ≤ m(1−w). Hence, the inequality
(2.21) leads to (

−y

1− y

)m(1−w)

P
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)

≥
(

−y

1− y

)m(1−w)

P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)
and [(

−y

1− y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)] 1
l

≥
[(

−y

1− y

)m(1−w)

(1− y)l+1P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)] 1
l+1

,

where

i) P
mw−l,l−m(1−w)
m(1−w) ((y− 2)/y), as y ∈ (−∞, 0), is positive, monotone decreas-

ing and

lim
y→−∞

P
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)
=

(
m− l

m(1− w)

)
≥ 1,

ii) (−y)m(1−w)(1 − y)l−m(1−w)P
mw−l,l−m(1−w)
m(1−w) ((y − 2)/y), as y ∈ (−∞, 0), is

positive, monotone decreasing and

lim
y→0−

(
−y

1− y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)
=

(
m

m(1− w)

)
≥ 1.

This follows from (1.8) and by a direct application of the Vandermonde identity.
Therefore, with respect to the probability generating function (2.20), one has the
following inequality

i) [(
−y

1− y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y − 2

y

)] 1
l

(2.23)

≥
[(

−y

1− y

)m(1−w)

(1− y)l+1P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y − 2

y

)] 1
l+1

,
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ii)

(2.24)

[
1(
m
mw

)
] 1

l

≤
[

1(
m
mw

)
] 1

l+1

,

i.e.,

1(
m
mw

) ≤ 1.(2.25)

Note that the left-hand side of (2.23) decreases as l increases, whereas the left-hand
side of (2.24) increases as l increases. This is similar to what we found under the set
of conditions C2). Hence, in order that the product of these two functions decreases
as l increases, we have to prove

(2.26)

[
1

( m
mw)

] 1
l

[
1

( m
mw)

] 1
l+1

≥

[(
−y
1−y

)m(1−w)

(1− y)l+1P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y−2
y

)] 1
l+1

[(
−y
1−y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y−2
y

)] 1
l

.

The right-hand side of (2.26) is bounded in (−∞, 0) and monotone decreasing. In
particular,

[
1

( m
mw)

] 1
l

[
1

( m
mw)

] 1
l+1

= lim
y→0−

[(
−y
1−y

)m(1−w)

(1− y)l+1P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y−2
y

)] 1
l+1

[(
−y
1−y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y−2
y

)] 1
l

≥

[(
−y
1−y

)m(1−w)

(1− y)l+1P
mw−l−1,l+1−m(1−w)
m(1−w)

(
y−2
y

)] 1
l+1

[(
−y
1−y

)m(1−w)

(1− y)lP
mw−l,l−m(1−w)
m(1−w)

(
y−2
y

)] 1
l

,

so that we have the desired inequality [T ∗
l (1− y,mw)]1/l ≥ [T ∗

l+1(1− y,mw)]1/(l+1)

for any y < 0. This completes the proof under the set of conditions C3), that is,
m(1− w) ≤ l and mw ≥ l.

2.4. Case C4). Note that m− l ≤ mw and m− l ≤ m(1− w) implies m− l ≤ l.
Under this set of conditions on m and l, we write T ∗

l (t,mw) as a Jacobi polynomial.
For any y < 0,

(2.27) T ∗
l (1− y,mw) =

(
m(1−w)
m−l

)
(
m
l

) (1− y)mw

(
−y

1− y

)m−l P
l−mw,l−m(1−w)
m−l

(
y−2
y

)
(
m(1−w)
m−l

)
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with

(
−y

1− y

)m−l P
l−mw,l−m(1−w)
m−l

(
y−2
y

)
(
m(1−w)
m−l

) =

m−l∑
i=0

(
m(1−w)

i

)(
mw

m−l−i

)
(
m(1−w)
m−l

) (1− y)i−(m−l)

≥
m−l−1∑
i=0

(
m(1−w)

i

)(
mw

m−l−1−i

)
(
m(1−w)
m−l−1

) (1− y)i−(m−l−1)(2.28)

=

m−l∑
i=1

(
m(1−w)

i−1

)(
mw

m−l−i

)
(
m(1−w)
m−l−1

) (1− y)i−(m−l)

=

(
−y

1− y

)m−l−1 P
l+1−mw,l+1−m(1−w)
m−l−1

(
y−2
y

)
(
m(1−w)
m−l−1

)
because

(m(1−w)
i )( mw

m−l−i)
(m(1−w)

m−l )

(m(1−w)
i−1 )( mw

m−l−i)
(m(1−w)

m−l−1 )

=
(m− l)(1− i+m(1− w))

i(1 + l −mw)
≥ 1

for any i = 1, . . . ,m−l and (1−y)−(m−l)
(
mw
m−l

)
/
(
m(1−w)
m−l

)
≥ 0. Indeed, m−l ≥ i ≥ 0

and 1− i+m(1−w) ≥ 1+ l−mw ≥ 0 from the set of conditions C4), and because
0 ≤ i ≤ m− l. Accordingly, the inequality displayed in (2.28) leads to the following
inequality:

[
(1− y)mw

(
−y

1− y

)m−l

P
l−mw,l−m(1−w)
m−l

(
y − 2

y

)] 1
l

≥
[
(1− y)mw

(
−y

1− y

)m−l−1

P
l+1−mw,l+1−m(1−w)
m−l−1

(
y − 2

y

)] 1
l+1

,

where

i) P
l−mw,l−m(1−w)
m−l ((y−2)/y), as y ∈ (−∞, 0) is positive, monotone decreasing

and

lim
y→−∞

P
l−mw,l−m(1−w)
m−l

(
y − 2

y

)
=

(
m(1− w)

m− l

)
≥ 1,

ii) (1 − y)mw(−y/(1 − y))m−lP
l−mw,l−m(1−w)
m−l ((y − 2)/y), as y ∈ (−∞, 0), is

positive, monotone decreasing and

lim
y→0−

(1− y)mw

(
−y

1− y

)m−l

P
l−mw,l−m(1−w)
m−l

(
y − 2

y

)
=

(
m

m− l

)
≥ 1.

This follows from the definition of Jacobi polynomial in (1.8) and the Vandermonde
identity. Therefore, with respect to the probability generating function (2.27) one
has the inequalities:
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i) [
(1− y)mw

(
−y

1− y

)m−l

P
l−mw,l−m(1−w)
m−l

(
y − 2

y

)] 1
l

(2.29)

≥
[
(1− y)mw

(
−y

1− y

)m−l−1

P
l+1−mw,l+1−m(1−w)
m−l−1

(
y − 2

y

)] 1
l+1

,

ii)

(2.30)

[(
m(1−w)
m−l

)
(
m
l

)
] 1

l

≤
[(

m(1−w)
m−l−1

)
(

m
l+1

)
] 1

l+1

,

i.e.,

(2.31)
l!m(1− w)!

m!(l −mw)!
≤

(
l + 1

1 + l −mw

)l

.

In particular, (2.31) follows by a straightforward induction on l. In other terms
the left-hand side of (2.29) decreases as l increases, whereas the left-hand side of
(2.31) increases as l increases. This is similar to what we found under C2) and C3).
Hence, in order that the product of these two functions decreases as l increases, we
have to prove

(2.32)

[
(m(1−w)

m−l )
(ml )

] 1
l

[
(m(1−w)

m−l−1 )
( m
l+1)

] 1
l+1

≥

[
(1− y)mw

(
−y
1−y

)m−l−1 P
l+1−mw,l+1−m(1−w)
m−l−1 ( y−2

y )
(m(1−w)

m−l−1 )

] 1
l+1

[
(1− y)mw

(
−y
1−y

)m−l P
l−mw,l−m(1−w)
m−l ( y−2

y )
(m(1−w)

m−l )

] 1
l

.

The right-hand side of (2.32) is bounded in (−∞, 0) and monotone decreasing. In
particular,[

(m(1−w)
m−l )
(ml )

] 1
l

[
(m(1−w)

m−l−1 )
( m
l+1)

] 1
l+1

= lim
y→0−

[
(1− y)mw

(
−y
1−y

)m−l−1 P
l+1−mw,l+1−m(1−w)
m−l−1 ( y−2

y )
(m(1−w)

m−l−1 )

] 1
l+1

[
(1− y)mw

(
−y
1−y

)m−l P
l−mw,l−m(1−w)
m−l ( y−2

y )
(m(1−w)

m−l )

] 1
l

≥

[
(1− y)mw

(
−y
1−y

)m−l−1 P
l+1−mw,l+1−m(1−w)
m−l−1 ( y−2

y )
(m(1−w)

m−l−1 )

] 1
l+1

[
(1− y)mw

(
−y
1−y

)m−l P
l−mw,l−m(1−w)
m−l ( y−2

y )
(m(1−w)

m−l )

] 1
l

,

so that we have the desired inequality [T ∗
l (1− y,mw)]1/l ≥ [T ∗

l+1(1− y,mw)]1/(l+1)

for any y < 0. This completes the proof under the set of conditions C4), that is,
m(1− w) ≤ l and mw ≤ l.

Acknowledgements

The authors are grateful to an anonymous referee, whose comments helped to
improve the paper. Stefano Favaro is a Fellow at Collegio Carlo Alberto, and was
supported by the European Research Council through StG N-BNP 306406. Stephen
Walker was partially supported by NSF grant DMS 1506879 and 1612891.



188 STEFANO FAVARO AND STEPHEN G. WALKER

References
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