AN ELEMENTARY PROOF OF THE POSITIVITY OF THE INTERTWINING OPERATOR IN ONE-DIMENSIONAL TRIGONOMETRIC DUNKL THEORY

JEAN-PHILIPPE ANKER

(Communicated by Mourad E. H. Ismail)

Abstract

This note is devoted to the intertwining operator in the onedimensional trigonometric Dunkl setting. We obtain a simple integral expression of this operator and deduce its positivity.

1. Introduction

We use the lecture notes [6] as a general reference about trigonometric Dunkl theory. In dimension 1, this special function theory is a deformation of Fourier analysis on \mathbb{R}, depending on two complex parameters k_{1} and k_{2}, where the classical derivative is replaced by the Cherednik operator

$$
\begin{aligned}
& D f(x)=\left(\frac{d}{d x}\right) f(x)+\left\{\frac{k_{1}}{1-e^{-x}}+\frac{2 k_{2}}{1-e^{-2 x}}\right\}\{f(x)-f(-x)\}-\left(\frac{k_{1}}{2}+k_{2}\right) f(x) \\
& =\left(\frac{d}{d x}\right) f(x)+\left\{\frac{k_{1}+k_{2}}{2} \operatorname{coth} \frac{x}{2}+\frac{k_{2}}{2} \tanh \frac{x}{2}\right\}\{f(x)-f(-x)\}-\left(\frac{k_{1}}{2}+k_{2}\right) f(-x),
\end{aligned}
$$

the Lebesgue measure by $A(x) d x$, where

$$
A(x)=\left|2 \sinh \frac{x}{2}\right|^{2 k_{1}}|2 \sinh x|^{2 k_{2}},
$$

and the exponential function $e^{i \lambda x}$ by the Opdam hypergeometric function

$$
\begin{aligned}
G_{i \lambda}(x) & =\overbrace{\varphi_{2 \lambda}^{k_{1}+k_{2}-\frac{1}{2}, k_{2}-\frac{1}{2}}\left(\frac{x}{2}\right)}^{\left.{ }_{2} \mathrm{~F}_{1} \frac{k_{1}}{2}+k_{2}+i \lambda, \frac{k_{1}}{2}+k_{2}-i \lambda ; k_{1}+k_{2}+\frac{1}{2} ;-\sinh ^{2} \frac{x}{2}\right)} \\
& +\frac{\frac{k_{1}}{2}+k_{2}+i \lambda}{2 k_{1}+2 k_{2}+1}(\sinh x) \underbrace{\varphi_{2 \lambda}^{k_{1}+k_{2}+\frac{1}{2}, k_{2}+\frac{1}{2}}\left(\frac{x}{2}\right)}_{{ }_{2} \mathrm{~F}_{1}\left(\frac{k_{1}}{2}+k_{2}+1+i \lambda, \frac{k_{1}}{2}+k_{2}+1-i \lambda ; k_{1}+k_{2}+\frac{3}{2} ;-\sinh ^{2} \frac{x}{2}\right)} .
\end{aligned}
$$

Here $\varphi_{\lambda}^{\alpha, \beta}(x)$ denotes the Jacobi function and ${ }_{2} \mathrm{~F}_{1}(a, b ; c ; Z)$ the classical hypergeometric function.

In a series of papers $([2], 5], 7], 3], 8, ~ 9], 10, ~ 11, \ldots)$, Trimèche and his collaborators studied an intertwining operator $\mathcal{V}: C^{\infty}(\mathbb{R}) \longrightarrow C^{\infty}(\mathbb{R})$, which is characterized by

$$
\mathcal{V} \circ\left(\frac{d}{d x}\right)=D \circ \mathcal{V} \quad \text { and } \quad \delta_{0} \circ \mathcal{V}=\delta_{0}
$$

[^0]and the dual operator $\mathcal{V}^{t}: C_{c}^{\infty}(\mathbb{R}) \longrightarrow C_{c}^{\infty}(\mathbb{R})$, which satisfies
$$
\int_{-\infty}^{+\infty} \mathcal{V} f(x) g(x) A(x) d x=\int_{-\infty}^{+\infty} f(y) \mathcal{V}^{t} g(y) d y
$$

Let us mention in particular the following facts.

- Eigenfunctions. For every $\lambda \in \mathbb{C}$,

$$
\mathcal{V}\left(x \longmapsto e^{i \lambda x}\right)=G_{i \lambda} .
$$

- Explicit expression. An integral representation of \mathcal{V} was computed in [2] (and independently in [1]) under the assumption that $k_{1} \geq 0, k_{2} \geq 0$ with $k_{1}+k_{2}>0$.
- Analytic continuation. It was shown in 3 that the intertwining operator \mathcal{V} extends meromorphically with respect to $k \in \mathbb{C}^{2}$, with singularities in

$$
\left\{k \in \mathbb{C}^{2} \left\lvert\, k_{1}+k_{2}+\frac{1}{2} \in-\mathbb{N}\right.\right\}
$$

- Positivity. On the one hand, the positivity of \mathcal{V} was disproved in 2] by using the above-mentioned expression of \mathcal{V} in the case $k_{1}>0, k_{2}>0$. On the other hand, the positivity of \mathcal{V} was investigated in [8, [9], [10], 11] by using the positivity of a heat type kernel in the case $k_{1} \geq 0, k_{2} \geq 0$.

In Section 2, we obtain an integral representation of \mathcal{V} and \mathcal{V}^{t} when $\operatorname{Re} k_{1}>0$ and $\operatorname{Re} k_{2}>0$. The expression is simpler and the proof is quicker than the previous ones in [2] or [1]. In Section 3, we deduce the positivity of \mathcal{V} and \mathcal{V}^{t} when $k_{1}>0$, $k_{2}>0$, and comment on the positivity issue.

2. Integral representation of the intertwining operator

In this section, we resume the computations in [2, Section 2] and prove the following result.

Theorem 2.1. Let $k=\left(k_{1}, k_{2}\right) \in \mathbb{C}^{2}$ with $\operatorname{Re} k_{1}>0$ and $\operatorname{Re} k_{2}>0$. Then

$$
\mathcal{V} f(x)=\int_{|y|<|x|} \mathcal{K}(x, y) f(y) d y \quad \forall x \in \mathbb{R}^{*}
$$

and

$$
\mathcal{V}^{t} g(y)=\int_{|x|>|y|} \mathcal{K}(x, y) g(x) A(x) d x
$$

where

$$
\begin{align*}
& \mathcal{K}(x, y)=\frac{c}{4} A(x)^{-1} \int_{|y|}^{|x|} \sigma(x, y, z)\left(\cosh \frac{z}{2}-\cosh \frac{y}{2}\right)^{k_{1}-1} \tag{2.1}\\
& \times(\cosh x-\cosh z)^{k_{2}-1}\left(\sinh \frac{z}{2}\right) d z
\end{align*}
$$

with

$$
\begin{equation*}
c=2^{3 k_{1}+3 k_{2}} \frac{\Gamma\left(k_{1}+k_{2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(k_{1}\right) \Gamma\left(k_{2}\right)} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(x, y, z)=(\operatorname{sign} x)\left\{e^{\frac{x}{2}}\left(2 \cosh \frac{x}{2}\right)-e^{-\frac{y}{2}}\left(2 \cosh \frac{z}{2}\right)\right\} \tag{2.3}
\end{equation*}
$$

Proof. As observed in [2] and [5],

$$
\mathcal{V} f(x)=\int_{-|x|}^{+|x|} \mathcal{K}(x, y) f(y) d y
$$

is an integral operator whose kernel

$$
\begin{align*}
\mathcal{K}(x, y) & =\frac{1}{4} K\left(\frac{x}{2}, \frac{y}{2}\right)+(\operatorname{sign} x)\left(\frac{k_{1}}{4}+\frac{k_{2}}{2}\right) A(x)^{-1} \widetilde{K}\left(\frac{x}{2}, \frac{y}{2}\right) \\
& -(\operatorname{sign} x) \frac{1}{2} A(x)^{-1} \frac{\partial}{\partial y} \widetilde{K}\left(\frac{x}{2}, \frac{y}{2}\right) \tag{2.4}
\end{align*}
$$

can be expressed in terms of the kernel

$$
\begin{align*}
K(x, y) & =2 c A(2 x)^{-1}|\sinh 2 x| \\
& \times \int_{|y|}^{|x|}(\cosh z-\cosh y)^{k_{1}-1}(\cosh 2 x-\cosh 2 z)^{k_{2}-1}(\sinh z) d z \tag{2.5}
\end{align*}
$$

of the intertwining operator in the Jacobi setting (see [4, Subsection 5.3]) and of its integral

$$
\begin{align*}
\widetilde{K}(x, y) & =\int_{|y|}^{|x|} K(w, y) A(2 w) d w \tag{2.6}\\
& =\frac{c}{k_{2}} \int_{|y|}^{|x|}(\cosh z-\cosh y)^{k_{1}-1}(\cosh 2 x-\cosh 2 z)^{k_{2}}(\sinh z) d z .
\end{align*}
$$

Let us integrate by parts (2.6) and differentiate the resulting expression with respect to y. This way, we obtain

$$
\begin{gather*}
\widetilde{K}(x, y)=\frac{4 c}{k_{1}} \int_{|y|}^{|x|}(\cosh z-\cosh y)^{k_{1}}(\cosh 2 x-\cosh 2 z)^{k_{2}-1} \tag{2.7}\\
\times(\cosh z)(\sinh z) d z
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial}{\partial y} \widetilde{K}(x, y)=-4 c(\sinh y) \int_{|y|}^{|x|}(\cosh z-\cosh y)^{k_{1}-1}(\cosh 2 x-\cosh 2 z)^{k_{2}-1} \tag{2.8}\\
\times(\cosh z)(\sinh z) d z .
\end{gather*}
$$

We conclude by substituting (2.5), (2.6), (2.7), (2.8) in (2.4) and more precisely (2.6), respectively (2.7), in

$$
(\operatorname{sign} x) \frac{k_{2}}{2} A(x)^{-1} \widetilde{K}\left(\frac{x}{2}, \frac{y}{2}\right), \quad \text { respectively } \quad(\operatorname{sign} x) \frac{k_{1}}{4} A(x)^{-1} \widetilde{K}\left(\frac{x}{2}, \frac{y}{2}\right) .
$$

Remark 2.2. Let $x, y \in \mathbb{R}$ such that $|x|>|y|$. The expression (2.1) extends meromorphically with respect to $k \in \mathbb{C}^{2}$, with singularities in $\left\{k \in \mathbb{C}^{2} \left\lvert\, k_{1}+k_{2}+\frac{1}{2} \in-\mathbb{N}\right.\right\}$, produced by the factor $\Gamma\left(k_{1}+k_{2}+\frac{1}{2}\right)$ in (2.2). In the limit cases where either k_{1} or k_{2} vanishes, (2.1) reduces to the following expressions, already obtained in (2] and [1]:

- Assume that $k_{1}=0$ and $\operatorname{Re} k_{2}>0$. Then

$$
\begin{align*}
\mathcal{K}(x, y) & =2^{k_{2}-1} \frac{\Gamma\left(k_{2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(k_{2}\right)}|\sinh x|^{-2 k_{2}} \tag{2.9}\\
& \times(\cosh x-\cosh y)^{k_{2}-1}(\operatorname{sign} x)\left(e^{x}-e^{-y}\right) .
\end{align*}
$$

- Assume that $k_{2}=0$ and $\operatorname{Re} k_{1}>0$. Then

$$
\begin{align*}
\mathcal{K}(x, y) & =2^{k_{1}-2} \frac{\Gamma\left(k_{1}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(k_{1}\right)}\left|\sinh \frac{x}{2}\right|^{-2 k_{1}} \tag{2.10}\\
& \times\left(\cosh \frac{x}{2}-\cosh \frac{y}{2}\right)^{k_{1}-1}(\operatorname{sign} x)\left(e^{\frac{x}{2}}-e^{-\frac{y}{2}}\right) .
\end{align*}
$$

3. Positivity of the intertwining operator

Corollary 3.1. Assume that $k_{1}>0$ and $k_{2}>0$. Then the kernel (2.1) is strictly positive for every $x, y \in \mathbb{R}$ such that $|x|>|y|$. Hence the intertwining operator \mathcal{V} and its dual \mathcal{V}^{t} are positive.

Proof. Let us check the positivity of (2.3) when $x, y, z \in \mathbb{R}$ satisfy $|x|>z>|y|$. On the one hand, if $x>0$, then

$$
\begin{aligned}
\sigma(x, y, z) & =e^{\frac{x}{2}}\left(2 \cosh \frac{x}{2}\right)-e^{-\frac{y}{2}}\left(2 \cosh \frac{z}{2}\right) \\
& >\left(e^{\frac{x}{2}}-e^{-\frac{y}{2}}\right)\left(2 \cosh \frac{x}{2}\right)>0 .
\end{aligned}
$$

On the other hand, if $x<0$, then

$$
\begin{aligned}
\sigma(x, y, z) & =e^{-\frac{y}{2}}\left(2 \cosh \frac{z}{2}\right)-e^{\frac{x}{2}}\left(2 \cosh \frac{x}{2}\right) \\
& >e^{-\frac{y}{2}}\left(2 \cosh \frac{y}{2}\right)-e^{\frac{x}{2}}\left(2 \cosh \frac{x}{2}\right)=e^{-y}-e^{x}>0 .
\end{aligned}
$$

Remark 3.2. As already observed in [2], the positivity of (2.9), respectively (2.10), is immediate in the limit case where $k_{1}=0$ and $k_{2}>0$, respectively $k_{2}=0$ and $k_{1}>0$.

Remark 3.3. The positivity of \mathcal{V} was mistakenly disproved in [2. Theorem 2.11] when $k_{1}>0$ and $k_{2}>0$. More precisely, by using a more complicated formula than (2.1), the density $\mathcal{K}(x, y)$ was shown to be negative when $x>0$ and $y \searrow-x$. The error in the proof lies in the expression A_{1}, which is equal to $\frac{k}{k^{\prime}} \frac{\sinh (2 x)-\sinh (2|y|)}{E}$ and which tends to $+2 \frac{k}{k^{\prime}} \frac{\cosh (2 x)}{\sinh (2 x)}>0$.
Remark 3.4. A different approach, based on the positivity of a heat type kernel, was used in [8, 9], [10] and [11] in order to tackle the positivity of \mathcal{V}. While [8] may be right, the same flaw occurs in (9], 10, [11, namely the cut-off $1_{Y_{\ell}}$ breaks down the differential-difference equations, which are not local.

In conclusion, this note settles in a simple way the positivity issue in dimension 1 and hence in the product case. Otherwise, the positivity of the interwining operator \mathcal{V} and its dual \mathcal{V}^{t}, when the multiplicity function k is ≥ 0, remains an open problem in higher dimensions.

References

[1] F. Ayadi, Analyse harmonique et équation de Schrödinger associées au laplacien de Dunkl trigonométrique, Ph.D. thesis, Université d'Orléans \& Université de Tunis El Manar, 2011, https://tel.archives-ouvertes.fr/tel-00664822.
[2] Léonard Gallardo and Khalifa Trimèche, Positivity of the Jacobi-Cherednik intertwining operator and its dual, Adv. Pure Appl. Math. 1 (2010), no. 2, 163-194, DOI 10.1515/APAM.2010.011. MR2679886
[3] Léonard Gallardo and Khalifa Trimèche, Singularities and analytic continuation of the Dunkl and the Jacobi-Cherednik intertwining operators and their duals, J. Math. Anal. Appl. 396 (2012), no. 1, 70-83, DOI 10.1016/j.jmaa.2012.06.007. MR2956944
[4] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special functions (group theoretical aspects and applications), R.A. Askey, T.H. Koornwinder \& W. Schempp (eds.), Reidel, Dordrecht, 1984, 1-84. MR0774055
[5] Mohamed Ali Mourou, Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line, Anal. Appl. (Singap.) 8 (2010), no. 4, 387-408, DOI 10.1142/S0219530510001692. MR2726071
[6] E.M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, with a preface by Toshio Oshima, MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo, 2000. MR1805058
[7] Khalifa Trimèche, The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 1 (2010), no. 3, 293-323, DOI 10.1515/APAM.2010.015. MR2719369
[8] Khalifa Trimèche, Positivity of the transmutation operators associated with a Cherednik type operator on the real line, Adv. Pure Appl. Math. 3 (2012), no. 4, 361-376. MR3024010
[9] Khalifa Trimèche, Positivity of the transmutation operators and absolute continuity of their representing measures for a root system on \mathbb{R}^{d}, Int. J. Appl. Math. 28 (2015), no. 4, 427-453. MR3443480
[10] Khalifa Trimèche, The positivity of the transmutation operators associated with the Cherednik operators attached to the root system of type A_{2}, Adv. Pure Appl. Math. 6 (2015), no. 2, 125-134, DOI 10.1515/apam-2015-5006. MR 3331712
[11] Khalifa Trimèche, The positivity of the transmutation operators associated to the Cherednik operators for the root system $B C_{2}$, Math. J. Okayama Univ. 58 (2016), 183-198. MR3444687

Université Orléans \& CNRS, Fédération Denis Poisson (FR 2964), Laboratoire MAPMO (UMR 7349), Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans cedex 2, France

E-mail address: anker@univ-orleans.fr

[^0]: Received by the editors November 20, 2016 and, in revised form, January 18, 2017 and January 29, 2017.

 2010 Mathematics Subject Classification. Primary 33C67.
 This work was partially supported by the regional project MADACA (Marches Aléatoires et processus de Dunkl - Approches Combinatoires et Algébriques, www.fdpoisson.fr/madaca).

