Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An elementary proof of the positivity of the intertwining operator in one-dimensional trigonometric Dunkl theory


Author: Jean-Philippe Anker
Journal: Proc. Amer. Math. Soc. 146 (2018), 189-193
MSC (2010): Primary 33C67
DOI: https://doi.org/10.1090/proc/13679
Published electronically: August 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note is devoted to the intertwining operator in the one-dimensional trigonometric Dunkl setting. We obtain a simple integral expression of this operator and deduce its positivity.


References [Enhancements On Off] (What's this?)

  • [1] F. Ayadi, Analyse harmonique et équation de Schrödinger associées au laplacien de Dunkl trigonométrique, Ph.D. thesis, Université d'Orléans & Université de Tunis El Manar, 2011, https://tel.archives-ouvertes.fr/tel-00664822.
  • [2] Léonard Gallardo and Khalifa Trimèche, Positivity of the Jacobi-Cherednik intertwining operator and its dual, Adv. Pure Appl. Math. 1 (2010), no. 2, 163-194. MR 2679886, https://doi.org/10.1515/APAM.2010.011
  • [3] Léonard Gallardo and Khalifa Trimèche, Singularities and analytic continuation of the Dunkl and the Jacobi-Cherednik intertwining operators and their duals, J. Math. Anal. Appl. 396 (2012), no. 1, 70-83. MR 2956944, https://doi.org/10.1016/j.jmaa.2012.06.007
  • [4] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special functions (group theoretical aspects and applications), R.A. Askey, T.H. Koornwinder & W. Schempp (eds.), Reidel, Dordrecht, 1984, 1-84. MR0774055
  • [5] Mohamed Ali Mourou, Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line, Anal. Appl. (Singap.) 8 (2010), no. 4, 387-408. MR 2726071, https://doi.org/10.1142/S0219530510001692
  • [6] E.M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, with a preface by Toshio Oshima, MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo, 2000. MR1805058
  • [7] Khalifa Trimèche, The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 1 (2010), no. 3, 293-323. MR 2719369, https://doi.org/10.1515/APAM.2010.015
  • [8] Khalifa Trimèche, Positivity of the transmutation operators associated with a Cherednik type operator on the real line, Adv. Pure Appl. Math. 3 (2012), no. 4, 361-376. MR 3024010
  • [9] Khalifa Trimèche, Positivity of the transmutation operators and absolute continuity of their representing measures for a root system on $ \mathbb{R}^d$, Int. J. Appl. Math. 28 (2015), no. 4, 427-453. MR 3443480
  • [10] Khalifa Trimèche, The positivity of the transmutation operators associated with the Cherednik operators attached to the root system of type $ A_2$, Adv. Pure Appl. Math. 6 (2015), no. 2, 125-134. MR 3331712, https://doi.org/10.1515/apam-2015-5006
  • [11] Khalifa Trimèche, The positivity of the transmutation operators associated to the Cherednik operators for the root system $ BC_2$, Math. J. Okayama Univ. 58 (2016), 183-198. MR 3444687

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C67

Retrieve articles in all journals with MSC (2010): 33C67


Additional Information

Jean-Philippe Anker
Affiliation: Université Orléans & CNRS, Fédération Denis Poisson (FR 2964), Laboratoire MAPMO (UMR 7349), Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans cedex 2, France
Email: anker@univ-orleans.fr

DOI: https://doi.org/10.1090/proc/13679
Received by editor(s): November 20, 2016
Received by editor(s) in revised form: January 18, 2017, and January 29, 2017
Published electronically: August 1, 2017
Additional Notes: This work was partially supported by the regional project MADACA (Marches Aléatoires et processus de Dunkl–Approches Combinatoires et Algébriques, www.fdpoisson.fr/madaca).
Communicated by: Mourad E. H. Ismail
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society