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SMOOTHNESS OF THE STEINER SYMMETRIZATION

YOUJIANG LIN

(Communicated by Lei Ni)

Abstract. It is proved that for a convex body with C2 boundary and posi-
tive Gauss curvature, its Steiner symmetral is again a convex body with C2

boundary and positive Gauss curvature.

1. Introduction

Denote n-dimensional Euclidean space by R
n and let K be a compact convex

subset of Rn. Let e1 be a unit vector in R
n. The Steiner symmetral K1 of K with

respect to the hyperplane e⊥1 orthogonal to e1 is the set generated by translating
all chords of K parallel to e1 so that their centers are on e⊥1 . For over 150 years the
Steiner symmetrization has been a fundamental geometric method for studying var-
ious isoperimetric problems, in particular, affine isoperimetric problems (see, e.g.,
[1, 2, 4–9, 11, 13–17]). An important property of the Steiner symmetrization is that
iterating Steiner symmetrizations of K through a suitable sequence of directions,
the sequence of successive Steiner symmetrals of K, converges to a Euclidean ball
in the Hausdorff metric (see, e.g., [3, 10]).

In this paper, we study the smoothness of the Steiner symmetrization process.
Kiselman [12] showed that K1 ∩ e⊥1 need not be of class C2 even if K is of class
C∞. This implies that the Steiner symmetral of a convex body of class C∞ need
not even be of class C2. Thus, the smoothness problem is not trivial. We prove the
following result.

Theorem 1.1. If K ⊂ R
n is a convex body of class C2

+, i.e., K has C2 boundary
and positive Gauss curvature, then its Steiner symmetral K1 is also of class C2

+.

Let K|e⊥1 denote the orthogonal projection of K onto the hyperplane e⊥1 . The
following corollary follows immediately from Theorem 1.1, since K1 ∩ e⊥1 = K|e⊥1 .
Corollary 1.2. If K ⊂ R

n is a convex body of class C2
+, then K|e⊥1 is a convex

body of class C2
+ in e⊥1 .

2. Preliminaries

The setting will be Euclidean n-space R
n. We write e1, . . . , en for the standard

orthonormal basis of Rn. For x ∈ R
n, we will write |x| =

√
x · x. A compact convex
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set with nonempty interior is called a convex body. A convex body is strictly convex
if its boundary does not contain a line segment of positive length. By intK and
∂K we denote, respectively, the interior and boundary of a convex body K.

A convex body K is said to be of class Ck, for some nonnegative integer k, if its
boundary hypersurface is a regular submanifold of Rn, in the sense of differential
geometry, that is, k-times continuously differentiable. In this paper, smoothness of
convex bodies is understood as smoothness of hypersurfaces in the sense of differ-
ential geometry. A convex body is of class Ck

+ if it is of class Ck and the Gauss
curvature at each point of ∂K is positive.

Let K be a convex body in R
n. For i = 1, 2, . . . , n, the overgraph and undergraph

functions are defined by

�i(x) := max{t ∈ R : x+ tei ∈ K}, x ∈ K|e⊥i ,(2.1)

�i(x) := min{t ∈ R : x+ tei ∈ K}, x ∈ K|e⊥i ,(2.2)

where K|e⊥i is the orthogonal projection of K onto the hyperplane e⊥i . Note that

−�i and �i are convex functions.
By (2.1) and (2.2), for any x ∈ K|e⊥i , it is easily seen that (x, �i(x)), (x, �i(x)) ∈

∂K. Moreover, for x ∈ int(K|e⊥i ), the Gauss curvature Hn−1 of K at the boundary
point (x, �i(x)) satisfies (see [11, p. 210])

Hn−1(x, �i(x)) =
|∇2�i(x)|

(1 + |∇�i(x)|2)
n+1
2

,(2.3)

where |∇2�i| denotes the determinant of the Hessian matrix of �i and |∇�i| denotes
the Euclidean norm of the gradient of �i. If �i is twice differentiable, then �i has
positive semi-definite Hessian matrix on int(K|e⊥i ) (see Theorem 1.5.13 in [16]).
Therefore, by (2.3), if K has C2 boundary and x ∈ int(K|e⊥i ), then ∂K has positive
curvature at (x, �i(x)) if and only if �i(x) has positive definite Hessian matrix.

The Steiner symmetral of K with respect to the hyperplane e⊥1 can be expressed
as follows:

K1 := {x+ te1 : x ∈ K|e⊥1 , |t| ≤
�1(x)− �1(x)

2
}.(2.4)

By the above definition, the overgraph and undergraph functions of K1 with
respect to e1, denoted by �1 and �

1
, satisfy the following equality:

�1(x) = −�
1
(x) =

�1(x)− �1(x)

2
, x ∈ K|e⊥1 .(2.5)

It is easily checked that K1 is a convex body symmetric with respect to e⊥1 .
Moreover, if K is strictly convex, then �1(x) and −�1(x) are strictly convex on
x ∈ K|e⊥1 . By (2.5), −�1(x) and �

1
(x) are also strictly convex on x ∈ K|e⊥1 .

Moreover, it is easily checked that −�1(x) = �
1
(x) for x ∈ ∂(K|e⊥1 ). Therefore, K1

is also strictly convex.
It follows that if K is a convex body of class C2

+, then K is strictly convex.

Moreover, �1(x) and −�1(x) are C2 and have positive definite Hessian matrices for
x ∈ int(K|e⊥1 ). Thus by (2.5), �

1
and −�1 are also C2 smooth and have positive

definite Hessian matrices on int(K|e⊥1 ), which implies that ∂K1 is C2 and has
positive curvature at every point x ∈ ∂K1\e⊥1 . Thus we only need to prove the C2

smoothness and positive curvature for x ∈ ∂K1 ∩ e⊥1 .
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For a fixed xo ∈ ∂K1 ∩ e⊥1 , choose a coordinate system so that xo is the origin,
xn = 0 is a support hyperplane of K1 at xo and en points to the interior of K1. For
simplicity of notation, we let �n(x), x ∈ K1|e⊥n , denote the undergraph function of
K1 with respect to en.

In order to prove that ∂K1 is C2 and has positive curvature at xo, we need to
prove that �n has the following properties:

C1 smoothness: �n is differentiable at the origin and ∂�n

∂xi
(0) = 0, i = 1, 2, . . . ,

n− 1;

C2 smoothness: The second partial derivatives ∂2�n

∂xi∂xj
(x), 1 ≤ i, j ≤ n − 1,

exist on a neighborhood of the origin and are continuous at the origin;
Positive Hessian: �n has positive definite Hessian matrix at the origin.
Let h be a sufficiently small positive number such that

h < min{�n(x) : x ∈ ∂(K1|e⊥n )} and h < min{�n(x) : x ∈ ∂(K|e⊥n )}.(2.6)

For h > 0 as in (2.6), let
(2.7)
K1,h = K1 ∩ {(x, xn) ∈ R

n : xn < h} and Kh = K ∩ {(x, xn) ∈ R
n : xn < h}.

Let D1 be the orthogonal projection of K1,h onto e⊥n . Let D be the orthogonal
projection of Kh onto e⊥n . It is easily checked that for x ∈ ∂D1 and y ∈ ∂D,
�n(x) = h = �n(y). Moreover, D1 is the Steiner symmetral of D with respect to
e⊥1 .

For x ∈ D1, let x = (r, z), where r = x1 and z = (x2, . . . , xn−1). Let r > 0 and

xn := �n(r, z).(2.8)

By (2.8) and the definition of �n, we have (r, z, xn) ∈ ∂K1. Thus, by the strict
convexity of K1 and the definition of �1, we have

r = �1(z, xn).(2.9)

Let

s := s(r, z) = �1(z, xn) = �1(z, �n(r, z))(2.10)

and

t := t(r, z) = �1(z, xn) = �1(z, �n(r, z)).(2.11)

By (2.9), (2.5), (2.10) and (2.11), we have

r = �1(z, xn) =
�1(z, xn)− �1(z, xn)

2
=

t− s

2
.(2.12)

By (2.10), (2.11) and the definitions of �1 and �1, we have (s, z, xn), (t, z, xn) ∈ ∂K.
By (r, z) ∈ D1, (s, z), (t, z) ∈ D and (2.8),

�n(s, z) = �n(t, z) = xn = �n(r, z).(2.13)

If r = 0, then xn = �n(0, z) and (0, z, xn) ∈ ∂K1, so 0 = �1(z, xn). Let

s1 := s1(z) = �1(z, xn) = �1(z, �n(0, z)).(2.14)

By (2.14), we have

�n(s1, z) = �n(0, z).(2.15)
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In fact, for fixed z, s1 is the minimum of �n(x1, z) over x1, so

∂�n
∂x1

(s1, z) = 0.(2.16)

Moreover, for fixed z and s, t, s1 as in (2.10), (2.11) and (2.14), we have s < s1 < t
and s, t → s1 when r → 0.

For fixed z ∈ D1 ∩ e⊥1 , let (−δ, δ) = {x1 ∈ R : (x1, z) ∈ D1} and (δ1, δ2) =
{x1 ∈ R : (x1, z) ∈ D}. Then δ2 − δ1 = 2δ. Since K1 is a strictly convex body
and symmetric with respect to e⊥1 , �n(x1, z) is an even and strictly convex function
for x1 ∈ (−δ, δ). Since K is a strictly convex body, �n(x1, z) is a strictly convex
function for x1 ∈ (δ1, δ2).

Moreover, for fixed z and s1 as in (2.14), the one-dimensional function xn =
�n(x1, z) for x1 ∈ [s1, δ2) and the one-dimensional function x1 = �1(z, xn) for xn ∈
[�n(s1, z), h) are inverse functions; xn = �n(x1, z) for x1 ∈ (δ1, s1] and x1 = �1(z, xn)
for xn ∈ [�n(s1, z), h) are inverse functions; xn = �n(x1, z) for x1 ∈ [0, δ) and
x1 = �1(z, xn) for xn ∈ [�n(0, z), h) are inverse functions. Since inverse functions
have reciprocal slopes at reflected points, by (2.13) we have that

∂�n
∂x1

(r, z) =

(
∂�1
∂xn

(z, xn)

)−1

,(2.17)

∂�n
∂x1

(s, z) =

(
∂�1
∂xn

(z, xn)

)−1

,(2.18)

and

∂�n
∂x1

(t, z) =

(
∂�1
∂xn

(z, xn)

)−1

.(2.19)

For fixed z ∈ D1 ∩ e⊥1 and s, t as in (2.10) and (2.11), for simplicity of notation,
we let

α := α(r, z) =
∂�n
∂x1

(s, z), β := β(r, z) =
∂�n
∂x1

(t, z).(2.20)

By (2.17), (2.18), (2.19), (2.12) and (2.20), for r > 0 we have

∂�n
∂x1

(r, z) =
2αβ

α− β
.(2.21)

3. Proof of the main result

Lemma 3.1. �n is differentiable at the origin and ∂�n

∂xi
(0) = 0 for i = 1, 2, . . . , n−1.

Proof. For r > 0, by �n(0) = 0, (2.13), (2.15) and (2.16), we have

∂+�n
∂x1

(0) = lim
r→0+

�n(r, 0)− �n(0, 0)

r

= lim
r→0+

(
t− s1
2r

· �n(t, 0)− �n(s1, 0)

t− s1
+

s− s1
2r

· �n(s, 0)− �n(s1, 0)

s− s1

)

= 0.(3.1)

Because �n(x1, 0) is an even function with respect to x1, the left derivative of �n
with respect to x1 at the origin is also zero. Thus ∂�n

∂x1
(0) = 0.
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If H is a support hyperplane of K1 at the origin, by ∂�n

∂x1
(0) = 0, then H is

parallel to e1. Thus H is also a support hyperplane of K at the point (s1, 0), where
s1 as in (2.14). Since K is of class C2

+ and hence of class C1, K has a unique outer
unit normal vector at the boundary point (s1, 0). Therefore, K1 has a unique outer
unit normal vector at the origin, which implies that �n is differentiable at the origin
(see Lemma 1.5.14 and Theorem 1.5.15 of [16]). Because �n is a convex function

and attains its minimum at the origin, ∂�n

∂xi
(0) = 0 for i = 1, 2, . . . , n− 1. �

By Lemma 3.1 and the arbitrary choice of xo ∈ ∂K1 ∩ e⊥1 , K1 is of class C1.

Lemma 3.2. For fixed z ∈ D1 ∩ e⊥1 and α and β as in (2.20), we have

lim
r→0+

α

β
= −1.(3.2)

Proof. By (2.16) and �n ∈ C2, for s1 as in (2.14), we have

(3.3) �n(t, z) = �n(s1, z) + 0(t− s1) +
1

2

∂2�n
∂x2

1

(s1, z)(t− s1)
2 + o((t− s1)

2),

(3.4) �n(s, z) = �n(s1, z) + 0(s− s1) +
1

2

∂2�n
∂x2

1

(s1, z)(s− s1)
2 + o((s− s1)

2).

Let
∂2�n
∂x2

1
(s1, z) = c. Since �n ∈ C2 with positive definite Hessian matrix, we have

c > 0. By (3.3), (3.4) and �n(t, z) = �n(s, z), we have

1

2
c(t− s1)

2 + o((t− s1)
2) =

1

2
c(s− s1)

2 + o((s− s1)
2).(3.5)

By (3.5) and s, t → s1 when r → 0+, we have

lim
r→0+

(t− s1)
2

(s− s1)2
= 1.(3.6)

By (2.20), (3.3), (3.4), (3.6) and s < s1 < t, we have

lim
r→0+

α

β
= lim

r→0+

c(s− s1) + o(|s− s1|)
c(t− s1) + o(|t− s1|)

= −1.(3.7)

�

Lemma 3.3. For fixed z ∈ D1∩ e⊥1 , for s, t and s1 as in (2.10), (2.11) and (2.14),
and for i = 2, . . . , n− 1, we have

lim
r→0+

∂�n
∂xi

(s, z)− ∂�n
∂xi

(t, z)
∂�n
∂x1

(s, z)
=

2
∂2�n

∂xi∂x1
(s1, z)

∂2�n
∂x2

1
(s1, z)

,(3.8)

where
∂2�n
∂x2

1
(s1, z) > 0.

Proof. First,

∂�n
∂xi

(s, z)− ∂�n
∂xi

(t, z)
∂�n
∂x1

(s, z)
=

∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(s, z)
−

∂�n
∂x1

(t, z)
∂�n
∂x1

(s, z)
·

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(t, z)
.
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Since �n ∈ C2 with positive definite Hessian matrix,
∂2�n
∂x2

1
(s1, z) > 0. By

∂�n
∂x1

(s1, z)

= 0 and s, t → s1 when r → 0+, we have

lim
r→0+

∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(s, z)
= lim

s→s1

(
∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)
)
/(s− s1)(

∂�n
∂x1

(s, z)− ∂�n
∂x1

(s1, z)
)
/(s− s1)

=

∂2�n
∂xi∂x1

(s1, z)
∂2�n
∂x2

1
(s1, z)

and

lim
r→0+

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(t, z)
= lim

t→s1

(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)
)
/(t− s1)(

∂�n
∂x1

(t, z)− ∂�n
∂x1

(s1, z)
)
/(t− s1)

=

∂2�n
∂xi∂x1

(s1, z)
∂2�n
∂x2

1
(s1, z)

.

By the above three equalities, (2.20) and Lemma 3.2, we have

lim
r→0+

∂�n
∂xi

(s, z)− ∂�n
∂xi

(t, z)
∂�n
∂x1

(s, z)
= lim

r→0+

∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(s, z)

− lim
r→0+

β

α
· lim
r→0+

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)
∂�n
∂x1

(t, z)

=
2

∂2�n
∂xi∂x1

(s1, z)
∂2�n
∂x2

1
(s1, z)

.

�

The next three lemmas give the explicit values of the second order partial deriva-
tives of �n for x ∈ D1\(D1 ∩ e⊥1 ).

Lemma 3.4. For fixed z ∈ D1 ∩ e⊥1 , r > 0 and s, t, α, β as in (2.10), (2.11) and
(2.20), we have

∂2�n
∂x2

1

(r, z) =
4α3

(α− β)3
· ∂

2�n
∂x2

1

(t, z)− 4β3

(α− β)3
· ∂

2�n
∂x2

1

(s, z).(3.9)

Proof. By t = �1(z, �n(r, z)) and (2.19), we have

∂t

∂r
=

∂�1
∂xn

(z, �n(r, z)) ·
∂�n
∂x1

(r, z) =

(
∂�n
∂x1

(t, z)

)−1

· ∂�n
∂x1

(r, z).(3.10)

By (3.10), (2.21) and (2.20), we have

∂t

∂r
=

2α

α− β
.(3.11)

Similarly, by s = �1(z, �n(r, z)), (2.18), (2.21) and (2.20), we have

∂s

∂r
=

2β

α− β
.(3.12)
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By partial differentiation of (2.21) with respect to r, (2.20), (3.11) and (3.12), we
have

∂2�n
∂x2

1

(r, z) = 2

(
∂α
∂r β + α∂β

∂r

)
(α− β)− αβ

(
∂α
∂r − ∂β

∂r

)
(α− β)2

= 2
α2 · ∂2�n

∂x2
1
(t, z) · ∂t

∂r − β2 · ∂2�n
∂x2

1
(s, z) · ∂s

∂r

(α− β)2

=
4α3

(α− β)3
· ∂

2�n
∂x2

1

(t, z)− 4β3

(α− β)3
· ∂

2�n
∂x2

1

(s, z).(3.13)

�

Lemma 3.5. For fixed z ∈ D1 ∩ e⊥1 , for r > 0 and s, t, α, β as in (2.10), (2.11)
and (2.20), and for i = 2, 3, . . . , n− 1, we have

∂2�n
∂x1∂xi

(r, z) = 2
(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)) · (α2 ∂2�n
∂x2

1
(t, z)− β2 ∂2�n

∂x2
1
(s, z))

(α− β)3

+2
α2 ∂2�n

∂x1∂xi
(t, z)− β2 ∂2�n

∂x1∂xi
(s, z)

(α− β)2
.(3.14)

Proof. By (2.12),

r =
1

2
(t− s) =

1

2
�1(z, xn)−

1

2
�1(z, xn),(3.15)

where xn = �n(r, z). Partial differentiation of (3.15) with respect to xi, i =
2, . . . , n− 1, at (r, z) gives

0 =
1

2

(
∂�1
∂xi

(z, xn) +
∂�1
∂xn

(z, xn) ·
∂�n
∂xi

(r, z)

)

− 1

2

(
∂�1
∂xi

(z, xn) +
∂�1
∂xn

(z, xn) ·
∂�n
∂xi

(r, z)

)
.

By (2.18), (2.19), (2.20) and the above equality, we have

∂�n
∂xi

(r, z) =
αβ

α− β

(
∂�1
∂xi

(z, xn)−
∂�1
∂xi

(z, xn)

)
.(3.16)

By the chain rule, xn = �n(s, z) = �n(t, z), (2.14), (2.16), (2.18), (2.19) and (2.20),
(3.17)

∂�1
∂xi

(z, xn) = − ∂�1
∂xn

(z, xn) ·
∂�n
∂xi

(t, z) = −∂�n
∂xi

(t, z)/
∂�n
∂x1

(t, z) = − 1

β

∂�n
∂xi

(t, z)

and
(3.18)

∂�1
∂xi

(z, xn) = − ∂�1
∂xn

(z, xn) ·
∂�n
∂xi

(s, z) = −∂�n
∂xi

(s, z)/
∂�n
∂x1

(s, z) = − 1

α

∂�n
∂xi

(s, z).

Putting (3.17) and (3.18) into (3.16), we obtain

(3.19)
∂�n
∂xi

(r, z) =
α

α− β
· ∂�n
∂xi

(t, z)− β

α− β
· ∂�n
∂xi

(s, z).
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By t = �1(z, xn), xn = �n(r, z), (2.19), (2.20), (3.17) and (3.19), we have

(3.20)
∂t

∂xi
(z, xn) =

∂�1
∂xi

(z, xn) +
∂�1
∂xn

(z, xn) ·
∂�n
∂xi

(r, z) =

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)

α− β
.

Similarly, we have

(3.21)
∂s

∂xi
(z, xn) =

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)

α− β
.

Moreover,

(3.22)
∂α

∂xi
=

∂(
∂�n
∂x1

(s, z))

∂xi
=

∂2�n
∂x2

1

(s, z) · ∂s

∂xi
(z, xn) +

∂2�n
∂x1∂xi

(s, z)

and

(3.23)
∂β

∂xi
=

∂(
∂�n
∂x1

(t, z))

∂xi
=

∂2�n
∂x2

1

(t, z) · ∂t

∂xi
(z, xn) +

∂2�n
∂x1∂xi

(t, z).

By (2.20), (3.20), (3.21), (3.22) and (3.23), partial differentiation of (2.21) with
respect to xi at (r, z), we have

∂2�n
∂x1∂xi

(r, z) = 2

(
∂α
∂xi

β + α ∂β
∂xi

)
(α− β)− αβ

(
∂α
∂xi

− ∂β
∂xi

)
(α− β)2

= 2
(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)) · (α2 ∂2�n
∂x2

1
(t, z)− β2 ∂2�n

∂x2
1
(s, z))

(α− β)3

+2
α2 ∂2�n

∂x1∂xi
(t, z)− β2 ∂2�n

∂x1∂xi
(s, z)

(α− β)2
.

�

Lemma 3.6. For fixed z ∈ D1 ∩ e⊥1 , for r > 0 and s, t, α, β as in (2.10), (2.11)
and (2.20), and for i, j = 2, 3, . . . , n− 1, we have

∂2�n
∂xi∂xj

(r, z)

(3.24)

=
(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)) · (∂�n∂xj
(t, z)− ∂�n

∂xj
(s, z)) · (α∂2�n

∂x2
1
(t, z)− β

∂2�n
∂x2

1
(s, z))

(α− β)3

+
(
∂�n
∂xj

(t, z)− ∂�n
∂xj

(s, z)) · (α ∂2�n
∂x1∂xi

(t, z)− β
∂2�n

∂x1∂xi
(s, z))

(α− β)2

+
(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s, z)) · (α ∂2�n
∂x1∂xj

(t, z)− β
∂2�n

∂x1∂xj
(s, z))

(α− β)2

+
α

∂2�n
∂xi∂xj

(t, z)− β
∂2�n

∂xi∂xj
(s, z)

α− β
.
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Proof. First, we have

∂(
∂�n
∂xi

(t, z))

∂xj
(r, z) =

∂2�n
∂xi∂x1

(t, z)
∂t

∂xj
(z, xn) +

∂2�n
∂xi∂xj

(t, z)(3.25)

and

∂(
∂�n
∂xi

(s, z))

∂xj
(r, z) =

∂2�n
∂xi∂x1

(s, z)
∂s

∂xj
(z, xn) +

∂2�n
∂xi∂xj

(s, z).(3.26)

By (3.25) and (3.26), partial differentiation of (3.19) with respect to xj at (r, z)
gives that

∂2�n
∂xi∂xj

(r, z) =
∂( α

α−β )

∂xj
· ∂�n
∂xi

(t, z) +
α

α− β

(
∂2�n

∂xi∂xj
(t, z) +

∂2�n
∂xi∂x1

(t, z)
∂t

∂xj

)

−
∂( β

α−β )

∂xj
· ∂�n
∂xi

(s, z)− β

α− β

(
∂2�n

∂xi∂xj
(s, z) +

∂2�n
∂xi∂x1

(s, z)
∂s

∂xj

)
.

By (3.20), (3.21), (3.22), (3.23), the right side of the above equality equals the right
side of (3.24). �

The following lemma gives the explicit values of the second order partial deriva-
tives of �n for x ∈ D1 ∩ e⊥1 .

Lemma 3.7. For fixed z ∈ D1 ∩ e⊥1 , for s1 as in (2.14) and i, j = 2, . . . , n− 1, we
have

∂2�n
∂x2

1

(0, z) =
∂2�n
∂x2

1

(s1, z),(3.27)

∂2�n
∂x1∂xi

(0, z) = 0 =
∂2�n
∂xi∂x1

(0, z),(3.28)

and

∂2�n
∂xi∂xj

(0, z) =
∂2�n

∂xi∂xj
(s1, z)−

∂2�n
∂x1∂xi

(s1, z) · ∂2�n
∂x1∂xj

(s1, z)

∂2�n
∂x2

1
(s1, z)

.(3.29)

Proof. Since ∂�n

∂x1
(0, z) = 0 and ∂�n

∂x1
(r, z) is an odd function with respect to r, by

(2.21) we have

(3.30)
∂2�n
∂x2

1

(0, z) = lim
r→0+

∂�n

∂x1
(r, z)− ∂�n

∂x1
(0, z)

r
= lim

r→0

2
∂�n
∂x1

(s, z)
∂�n
∂x1

(t, z)/r2

∂�n
∂x1

(s, z)/r − ∂�n
∂x1

(t, z)/r
.

By (3.6) and 2r = (t− s1) + (s1 − s), we have

lim
r→0+

t− s1
r

= lim
r→0+

s1 − s

r
= 1.(3.31)

By (2.16) and (3.31), we have

lim
r→0+

∂�n
∂x1

(t, z)

r
= lim

r→0+

∂�n
∂x1

(t, z)− ∂�n
∂x1

(s1, z)

t− s1
=

∂2�n
∂x2

1

(s1, z).(3.32)

Similarly, we have

lim
r→0+

∂�n
∂x1

(s, z)

r
= −∂2�n

∂x2
1

(s1, z).(3.33)
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By (3.30), (3.32) and (3.33), we have

∂2�n
∂x2

1

(0, z) =
−2

(
∂2�n
∂x2

1
(s1, z)

)2

−2
∂2�n
∂x2

1
(s1, z)

=
∂2�n
∂x2

1

(s1, z).(3.34)

Since ∂�n

∂x1
(0, z) = 0 for any z ∈ D1 ∩ e⊥1 ,

∂2�n

∂x1∂xi
(0, z) = 0 is established.

Since �n and �n are C1, by (3.19) and (3.2) we have

∂�n
∂xi

(0, z) = lim
r→0+

∂�n
∂xi

(r, z) =
∂�n
∂xi

(s1, z).(3.35)

By (3.19), (3.35), (3.2), (3.31) and �n ∈ C2, we have

lim
r→0+

∂�n

∂xi
(r, z)− ∂�n

∂xi
(0, z)

r

= lim
r→0+

α
α−β

(
∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)
)
− β

α−β

(
∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)
)

r

=
1

2
lim
t→s+1

∂�n
∂xi

(t, z)− ∂�n
∂xi

(s1, z)

t− s1
− 1

2
lim

s→s−1

∂�n
∂xi

(s, z)− ∂�n
∂xi

(s1, z)

s− s1

=
1

2

∂2�n
∂xi∂x1

(s1, z)−
1

2

∂2�n
∂xi∂x1

(s1, z)

= 0.(3.36)

Moreover, since ∂�n

∂xi
(r, z) is an even function with respect to r, by (3.36)

lim
r→0−

∂�n

∂xi
(r, z)− ∂�n

∂xi
(0, z)

r
= − lim

r→0+

∂�n

∂xi
(r, z)− ∂�n

∂xi
(0, z)

r
= 0.(3.37)

By (3.36) and (3.37), we have

∂2�n
∂xi∂x1

(0, z) = lim
r→0

∂�n

∂xi
(r, z)− ∂�n

∂xi
(0, z)

r
= 0.(3.38)

By (3.35) and �n ∈ C2, we have

∂2�n
∂xi∂xj

(0, z) = lim
ε→0

∂�n

∂xi
(0, z + εej)− ∂�n

∂xi
(0, z)

ε

= lim
ε→0

∂�n
∂xi

(s1(z + εej), z + εej)− ∂�n
∂xi

(s1(z), z)

ε

= lim
ε→0

∂�n
∂xi

(s1(z + εej), z + εej)− ∂�n
∂xi

(s1(z + εej), z)

ε

+ lim
ε→0

∂�n
∂xi

(s1(z + εej), z)− ∂�n
∂xi

(s1(z), z)

ε

=
∂2�n

∂xi∂xj
(s1, z) +

∂2�n
∂xi∂x1

(s1, z) · lim
ε→0

s1(z + εej)− s1(z)

ε

=
∂2�n

∂xi∂xj
(s1, z)−

∂2�n
∂xi∂x1

(s1, z) · ∂2�n
∂x1∂xj

(s1, z)

∂2�n
∂x2

1
(s1, z)

,(3.39)
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where the last equality is obtained from

lim
ε→0+

s1(z + εej)− s1(z)

ε

(3.40)

= − lim
ε→0+

(
∂�n
∂x1

(s1(z), z + εej)− ∂�n
∂x1

(s1(z), z))/ε

(
∂�n
∂x1

(s1(z + εej), z + εej)− ∂�n
∂x1

(s1(z), z + εej))/(s1(z + εej)− s1(z))

= − ∂2�n
∂x1∂xj

(s1, z)/
∂2�n
∂x2

1

(s1, z).

�
Lemmas 3.4-3.7 show the existence of ∂2�n

∂xi∂xj
(x), 1 ≤ i, j ≤ n − 1, for x ∈ D1.

We will prove the continuity of ∂2�n

∂xi∂xj
at the origin and prove that �n has positive

definite Hessian matrix at the origin.

Lemma 3.8. For i, j = 1, 2, . . . , n − 1 and any fixed compact set S ⊂ D1 ∩ e⊥1 ,
∂2�n

∂xi∂xj
(r, z) converges to ∂2�n

∂xi∂xj
(0, z) uniformly on S as r → 0.

Proof. By Lemmas 3.2-3.3 and Lemma 3.7, taking the limit of r → 0+ in (3.9),

(3.14) and (3.24) shows that ∂2�n

∂xi∂xj
(r, z) converges to ∂2�n

∂xi∂xj
(0, z) pointwise on S as

r → 0+. Moreover, since �n is symmetric with respect to e⊥1 , for i, j = 2, . . . , n− 1,
∂2�n

∂x2
1(r,z)

and ∂2�n

∂xi∂xj
(r, z) are even with respect to r and ∂2�n

∂x1∂xi
(r, z) is odd with

respect to r. Therefore, ∂2�n

∂xi∂xj
(r, z) converges to ∂2�n

∂xi∂xj
(0, z) pointwise on S as

r → 0.
Since |s−s1|+ |t−s1| = 2r is independent of z and the second partial derivative

of �n is uniformly continuous on any compact subset of D, the left sides of the
equalities (3.2) and (3.8) converge uniformly to their right sides, respectively. By

(3.9), (3.14), (3.24) and the uniformly continuity of
∂2�n

∂xi∂xj
, we have that ∂2�n

∂xi∂xj
(r, z)

converges to ∂2�n

∂xi∂xj
(0, z) uniformly on S as r → 0. �

Proposition 3.1. The second partial derivatives of �n are continuous at the origin.

Proof. For z ∈ D1 ∩ e⊥1 , if z → 0, then s1(z) → s1(0). By (3.27), (3.28), (3.29)
and �n ∈ C2, the second partial derivatives of �n are continuous at the origin when
z ∈ D1 ∩ e⊥1 and z → 0. By the uniform convergence proved in Lemma 3.8, the
second partial derivatives of �n are continuous at the origin when x ∈ D1 and
x → 0. �
Proposition 3.2. The Hessian matrix of �n at the origin is positive definite.

Proof. Let A = (aij)n−1,n−1 denote the Hessian matrix of �n at the origin and let
B = (bij)n−1,n−1 denote the Hessian matrix of �n at the point (s1, 0). By (3.27),
(3.28), (3.29), the kth row (k = 2, . . . , n − 1) of A can be obtained by adding the

kth row of B by − bk1

b11
times the first row of B. Thus |A| = |B|. Since |B| > 0,

|A| > 0. Moreover, �n is a convex function, so its Hessian matrix A is semi-positive
definite. By |A| > 0, A is positive definite. �

By Proposition 3.1, Proposition 3.2 and the arbitrary choice of xo ∈ ∂K1 ∩ e⊥1 ,
K1 is of class C2

+.
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4. Open problems

Problem 4.1. For 3 ≤ k ≤ ∞, is the Steiner symmetral of a convex body of class
Ck

+ again of class Ck
+?

The following problem is provided by the referee.

Problem 4.2. Can Theorem 1.1 be obtained simply from Corollary 1.2?
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