SMOOTHNESS OF THE STEINER SYMMETRIZATION

YOUJIANG LIN

(Communicated by Lei Ni)

Abstract

It is proved that for a convex body with C^{2} boundary and positive Gauss curvature, its Steiner symmetral is again a convex body with C^{2} boundary and positive Gauss curvature.

1. Introduction

Denote n-dimensional Euclidean space by \mathbb{R}^{n} and let K be a compact convex subset of \mathbb{R}^{n}. Let e_{1} be a unit vector in \mathbb{R}^{n}. The Steiner symmetral K_{1} of K with respect to the hyperplane e_{1}^{\perp} orthogonal to e_{1} is the set generated by translating all chords of K parallel to e_{1} so that their centers are on e_{1}^{\perp}. For over 150 years the Steiner symmetrization has been a fundamental geometric method for studying various isoperimetric problems, in particular, affine isoperimetric problems (see, e.g., [1,2,4-9, 11, 13-17). An important property of the Steiner symmetrization is that iterating Steiner symmetrizations of K through a suitable sequence of directions, the sequence of successive Steiner symmetrals of K, converges to a Euclidean ball in the Hausdorff metric (see, e.g., 3 , 10).

In this paper, we study the smoothness of the Steiner symmetrization process. Kiselman [12] showed that $K_{1} \cap e_{1}^{\perp}$ need not be of class C^{2} even if K is of class C^{∞}. This implies that the Steiner symmetral of a convex body of class C^{∞} need not even be of class C^{2}. Thus, the smoothness problem is not trivial. We prove the following result.
Theorem 1.1. If $K \subset \mathbb{R}^{n}$ is a convex body of class C_{+}^{2}, i.e., K has C^{2} boundary and positive Gauss curvature, then its Steiner symmetral K_{1} is also of class C_{+}^{2}.

Let $K \mid e_{1}^{\perp}$ denote the orthogonal projection of K onto the hyperplane e_{1}^{\perp}. The following corollary follows immediately from Theorem 1.1, since $K_{1} \cap e_{1}^{\perp}=K \mid e_{1}^{\perp}$.
Corollary 1.2. If $K \subset \mathbb{R}^{n}$ is a convex body of class C_{+}^{2}, then $K \mid e_{1}^{\perp}$ is a convex body of class C_{+}^{2} in e_{1}^{\perp}.

2. Preliminaries

The setting will be Euclidean n-space \mathbb{R}^{n}. We write e_{1}, \ldots, e_{n} for the standard orthonormal basis of \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$, we will write $|x|=\sqrt{x \cdot x}$. A compact convex

[^0]set with nonempty interior is called a convex body. A convex body is strictly convex if its boundary does not contain a line segment of positive length. By int K and ∂K we denote, respectively, the interior and boundary of a convex body K.

A convex body K is said to be of class C^{k}, for some nonnegative integer k, if its boundary hypersurface is a regular submanifold of \mathbb{R}^{n}, in the sense of differential geometry, that is, k-times continuously differentiable. In this paper, smoothness of convex bodies is understood as smoothness of hypersurfaces in the sense of differential geometry. A convex body is of class C_{+}^{k} if it is of class C^{k} and the Gauss curvature at each point of ∂K is positive.

Let K be a convex body in \mathbb{R}^{n}. For $i=1,2, \ldots, n$, the overgraph and undergraph functions are defined by

$$
\begin{array}{ll}
\bar{\ell}_{i}(x):=\max \left\{t \in \mathbb{R}: x+t e_{i} \in K\right\}, & x \in K \mid e_{i}^{\perp} \\
\underline{\ell}_{i}(x):=\min \left\{t \in \mathbb{R}: x+t e_{i} \in K\right\}, & x \in K \mid e_{i}^{\perp} \tag{2.2}
\end{array}
$$

where $K \mid e_{i}^{\perp}$ is the orthogonal projection of K onto the hyperplane e_{i}^{\perp}. Note that $-\bar{\ell}_{i}$ and $\underline{\ell}_{i}$ are convex functions.

By (2.1) and (2.2), for any $x \in K \mid e_{i}^{\perp}$, it is easily seen that $\left(x, \bar{\ell}_{i}(x)\right),\left(x, \underline{\ell}_{i}(x)\right) \in$ ∂K. Moreover, for $x \in \operatorname{int}\left(K \mid e_{i}^{\perp}\right)$, the Gauss curvature H_{n-1} of K at the boundary point $\left(x, \underline{\ell}_{i}(x)\right)$ satisfies (see [11, p. 210])

$$
\begin{equation*}
H_{n-1}\left(x, \underline{\ell}_{i}(x)\right)=\frac{\left|\nabla^{2} \underline{\ell}_{i}(x)\right|}{\left(1+\left|\nabla \underline{\ell}_{i}(x)\right|^{2}\right)^{\frac{n+1}{2}}} \tag{2.3}
\end{equation*}
$$

where $\left|\nabla^{2} \underline{\ell}_{i}\right|$ denotes the determinant of the Hessian matrix of $\underline{\ell}_{i}$ and $\left|\nabla \underline{\ell}_{i}\right|$ denotes the Euclidean norm of the gradient of $\underline{\ell}_{i}$. If $\underline{\ell}_{i}$ is twice differentiable, then $\underline{\ell}_{i}$ has positive semi-definite Hessian matrix on $\operatorname{int}\left(K \mid e_{i}^{\perp}\right)$ (see Theorem 1.5.13 in [16]). Therefore, by (2.3), if K has C^{2} boundary and $x \in \operatorname{int}\left(K \mid e_{i}^{\perp}\right)$, then ∂K has positive curvature at $\left(x, \underline{\ell}_{i}(x)\right)$ if and only if $\underline{\ell}_{i}(x)$ has positive definite Hessian matrix.

The Steiner symmetral of K with respect to the hyperplane e_{1}^{\perp} can be expressed as follows:

$$
\begin{equation*}
K_{1}:=\left\{x+t e_{1}: x \in K\left|e_{1}^{\perp},|t| \leq \frac{\bar{\ell}_{1}(x)-\underline{\ell}_{1}(x)}{2}\right\}\right. \tag{2.4}
\end{equation*}
$$

By the above definition, the overgraph and undergraph functions of K_{1} with respect to e_{1}, denoted by $\bar{\varrho}_{1}$ and ϱ_{1}, satisfy the following equality:

$$
\begin{equation*}
\bar{\varrho}_{1}(x)=-\underline{\varrho}_{1}(x)=\frac{\bar{\ell}_{1}(x)-\underline{\ell}_{1}(x)}{2}, x \in K \mid e_{1}^{\perp} \tag{2.5}
\end{equation*}
$$

It is easily checked that K_{1} is a convex body symmetric with respect to e_{1}^{\perp}. Moreover, if K is strictly convex, then $\underline{\ell}_{1}(x)$ and $-\bar{\ell}_{1}(x)$ are strictly convex on $x \in K \mid e_{1}^{\perp}$. By (2.5), $-\bar{\varrho}_{1}(x)$ and $\underline{\varrho}_{1}(x)$ are also strictly convex on $x \in K \mid e_{1}^{\perp}$. Moreover, it is easily checked that $-\bar{\varrho}_{1}(x)=\underline{\varrho}_{1}(x)$ for $x \in \partial\left(K \mid e_{1}^{\perp}\right)$. Therefore, K_{1} is also strictly convex.

It follows that if K is a convex body of class C_{+}^{2}, then K is strictly convex. Moreover, $\underline{\ell}_{1}(x)$ and $-\bar{\ell}_{1}(x)$ are C^{2} and have positive definite Hessian matrices for $x \in \operatorname{int}\left(K \mid e_{1}^{\perp}\right)$. Thus by (2.5), ϱ_{1} and $-\bar{\varrho}_{1}$ are also C^{2} smooth and have positive definite Hessian matrices on $\operatorname{int}\left(K \mid e_{1}^{\perp}\right)$, which implies that ∂K_{1} is C^{2} and has positive curvature at every point $x \in \partial K_{1} \backslash e_{1}^{\perp}$. Thus we only need to prove the C^{2} smoothness and positive curvature for $x \in \partial K_{1} \cap e_{1}^{\perp}$.

For a fixed $x_{o} \in \partial K_{1} \cap e_{1}^{\perp}$, choose a coordinate system so that x_{o} is the origin, $x_{n}=0$ is a support hyperplane of K_{1} at x_{o} and e_{n} points to the interior of K_{1}. For simplicity of notation, we let $\varrho_{n}(x), x \in K_{1} \mid e_{n}^{\perp}$, denote the undergraph function of K_{1} with respect to e_{n}.

In order to prove that ∂K_{1} is C^{2} and has positive curvature at x_{o}, we need to prove that ϱ_{n} has the following properties:
C^{1} smoothness: ϱ_{n} is differentiable at the origin and $\frac{\partial \varrho_{n}}{\partial x_{i}}(0)=0, i=1,2, \ldots$, $n-1$;
C^{2} smoothness: The second partial derivatives $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(x), 1 \leq i, j \leq n-1$, exist on a neighborhood of the origin and are continuous at the origin;

Positive Hessian: ϱ_{n} has positive definite Hessian matrix at the origin.
Let h be a sufficiently small positive number such that
(2.6) $h<\min \left\{\varrho_{n}(x): x \in \partial\left(K_{1} \mid e_{n}^{\perp}\right)\right\}$ and $h<\min \left\{\underline{\ell}_{n}(x): x \in \partial\left(K \mid e_{n}^{\perp}\right)\right\}$.

For $h>0$ as in (2.6), let

$$
\begin{equation*}
K_{1, h}=K_{1} \cap\left\{\left(x, x_{n}\right) \in \mathbb{R}^{n}: x_{n}<h\right\} \text { and } K_{h}=K \cap\left\{\left(x, x_{n}\right) \in \mathbb{R}^{n}: x_{n}<h\right\} . \tag{2.7}
\end{equation*}
$$

Let D_{1} be the orthogonal projection of $K_{1, h}$ onto e_{n}^{\perp}. Let D be the orthogonal projection of K_{h} onto e_{n}^{\perp}. It is easily checked that for $x \in \partial D_{1}$ and $y \in \partial D$, $\varrho_{n}(x)=h=\underline{\ell}_{n}(y)$. Moreover, D_{1} is the Steiner symmetral of D with respect to e_{1}^{\perp}.

For $x \in D_{1}$, let $x=(r, z)$, where $r=x_{1}$ and $z=\left(x_{2}, \ldots, x_{n-1}\right)$. Let $r>0$ and

$$
\begin{equation*}
x_{n}:=\varrho_{n}(r, z) . \tag{2.8}
\end{equation*}
$$

By (2.8) and the definition of ϱ_{n}, we have $\left(r, z, x_{n}\right) \in \partial K_{1}$. Thus, by the strict convexity of K_{1} and the definition of $\bar{\varrho}_{1}$, we have

$$
\begin{equation*}
r=\bar{\varrho}_{1}\left(z, x_{n}\right) . \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
s:=s(r, z)=\underline{\ell}_{1}\left(z, x_{n}\right)=\underline{\ell}_{1}\left(z, \varrho_{n}(r, z)\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
t:=t(r, z)=\bar{\ell}_{1}\left(z, x_{n}\right)=\bar{\ell}_{1}\left(z, \varrho_{n}(r, z)\right) . \tag{2.11}
\end{equation*}
$$

By (2.9), (2.5), (2.10) and (2.11), we have

$$
\begin{equation*}
r=\bar{\varrho}_{1}\left(z, x_{n}\right)=\frac{\bar{\ell}_{1}\left(z, x_{n}\right)-\underline{\ell}_{1}\left(z, x_{n}\right)}{2}=\frac{t-s}{2} . \tag{2.12}
\end{equation*}
$$

By (2.10), (2.11) and the definitions of $\bar{\ell}_{1}$ and $\underline{\ell}_{1}$, we have $\left(s, z, x_{n}\right),\left(t, z, x_{n}\right) \in \partial K$. By $(r, z) \in D_{1},(s, z),(t, z) \in D$ and (2.8),

$$
\begin{equation*}
\underline{\ell}_{n}(s, z)=\underline{\ell}_{n}(t, z)=x_{n}=\varrho_{n}(r, z) \text {. } \tag{2.13}
\end{equation*}
$$

If $r=0$, then $x_{n}=\varrho_{n}(0, z)$ and $\left(0, z, x_{n}\right) \in \partial K_{1}$, so $0=\bar{\varrho}_{1}\left(z, x_{n}\right)$. Let

$$
\begin{equation*}
s_{1}:=s_{1}(z)=\bar{\ell}_{1}\left(z, x_{n}\right)=\bar{\ell}_{1}\left(z, \varrho_{n}(0, z)\right) . \tag{2.14}
\end{equation*}
$$

By (2.14), we have

$$
\begin{equation*}
\underline{\ell}_{n}\left(s_{1}, z\right)=\varrho_{n}(0, z) \tag{2.15}
\end{equation*}
$$

In fact, for fixed z, s_{1} is the minimum of $\underline{\ell}_{n}\left(x_{1}, z\right)$ over x_{1}, so

$$
\begin{equation*}
\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}, z\right)=0 \tag{2.16}
\end{equation*}
$$

Moreover, for fixed z and s, t, s_{1} as in (2.10), (2.11) and (2.14), we have $s<s_{1}<t$ and $s, t \rightarrow s_{1}$ when $r \rightarrow 0$.

For fixed $z \in D_{1} \cap e_{1}^{\perp}$, let $(-\delta, \delta)=\left\{x_{1} \in \mathbb{R}:\left(x_{1}, z\right) \in D_{1}\right\}$ and $\left(\delta_{1}, \delta_{2}\right)=$ $\left\{x_{1} \in \mathbb{R}:\left(x_{1}, z\right) \in D\right\}$. Then $\delta_{2}-\delta_{1}=2 \delta$. Since K_{1} is a strictly convex body and symmetric with respect to $e_{1}^{\perp}, \varrho_{n}\left(x_{1}, z\right)$ is an even and strictly convex function for $x_{1} \in(-\delta, \delta)$. Since K is a strictly convex body, $\underline{\ell}_{n}\left(x_{1}, z\right)$ is a strictly convex function for $x_{1} \in\left(\delta_{1}, \delta_{2}\right)$.

Moreover, for fixed z and s_{1} as in (2.14), the one-dimensional function $x_{n}=$ $\underline{\ell}_{n}\left(x_{1}, z\right)$ for $x_{1} \in\left[s_{1}, \delta_{2}\right)$ and the one-dimensional function $x_{1}=\bar{\ell}_{1}\left(z, x_{n}\right)$ for $x_{n} \in$ [$\left.\underline{\ell}_{n}\left(s_{1}, z\right), h\right)$ are inverse functions; $x_{n}=\underline{\ell}_{n}\left(x_{1}, z\right)$ for $x_{1} \in\left(\delta_{1}, s_{1}\right]$ and $x_{1}=\underline{\ell}_{1}\left(z, x_{n}\right)$ for $x_{n} \in\left[\underline{\ell}_{n}\left(s_{1}, z\right), h\right)$ are inverse functions; $x_{n}=\varrho_{n}\left(x_{1}, z\right)$ for $x_{1} \in[0, \delta)$ and $x_{1}=\bar{\varrho}_{1}\left(z, x_{n}\right)$ for $x_{n} \in\left[\varrho_{n}(0, z), h\right)$ are inverse functions. Since inverse functions have reciprocal slopes at reflected points, by (2.13) we have that

$$
\begin{align*}
& \frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)=\left(\frac{\partial \bar{\varrho}_{1}}{\partial x_{n}}\left(z, x_{n}\right)\right)^{-1}, \tag{2.17}\\
& \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)=\left(\frac{\partial \underline{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right)\right)^{-1}, \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)=\left(\frac{\partial \bar{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right)\right)^{-1} \tag{2.19}
\end{equation*}
$$

For fixed $z \in D_{1} \cap e_{1}^{\perp}$ and s, t as in (2.10) and (2.11), for simplicity of notation, we let

$$
\begin{equation*}
\alpha:=\alpha(r, z)=\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z), \quad \beta:=\beta(r, z)=\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z) . \tag{2.20}
\end{equation*}
$$

By (2.17), (2.18), (2.19), (2.12) and (2.20), for $r>0$ we have

$$
\begin{equation*}
\frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)=\frac{2 \alpha \beta}{\alpha-\beta} \tag{2.21}
\end{equation*}
$$

3. Proof of the main result

Lemma 3.1. ϱ_{n} is differentiable at the origin and $\frac{\partial \varrho_{n}}{\partial x_{i}}(0)=0$ for $i=1,2, \ldots, n-1$.
Proof. For $r>0$, by $\varrho_{n}(0)=0$, (2.13), (2.15) and (2.16), we have

$$
\begin{align*}
\frac{\partial_{+} \varrho_{n}}{\partial x_{1}}(0) & =\lim _{r \rightarrow 0+} \frac{\varrho_{n}(r, 0)-\varrho_{n}(0,0)}{r} \\
& =\lim _{r \rightarrow 0+}\left(\frac{t-s_{1}}{2 r} \cdot \frac{\underline{\ell}_{n}(t, 0)-\underline{\ell}_{n}\left(s_{1}, 0\right)}{t-s_{1}}+\frac{s-s_{1}}{2 r} \cdot \frac{\underline{\ell}_{n}(s, 0)-\underline{\ell}_{n}\left(s_{1}, 0\right)}{s-s_{1}}\right) \\
(3.1) & =0 . \tag{3.1}
\end{align*}
$$

Because $\varrho_{n}\left(x_{1}, 0\right)$ is an even function with respect to x_{1}, the left derivative of ϱ_{n} with respect to x_{1} at the origin is also zero. Thus $\frac{\partial \varrho_{n}}{\partial x_{1}}(0)=0$.

If H is a support hyperplane of K_{1} at the origin, by $\frac{\partial \varrho_{n}}{\partial x_{1}}(0)=0$, then H is parallel to e_{1}. Thus H is also a support hyperplane of K at the point $\left(s_{1}, 0\right)$, where s_{1} as in (2.14). Since K is of class C_{+}^{2} and hence of class C^{1}, K has a unique outer unit normal vector at the boundary point $\left(s_{1}, 0\right)$. Therefore, K_{1} has a unique outer unit normal vector at the origin, which implies that ϱ_{n} is differentiable at the origin (see Lemma 1.5.14 and Theorem 1.5.15 of [16]). Because ϱ_{n} is a convex function and attains its minimum at the origin, $\frac{\partial \varrho_{n}}{\partial x_{i}}(0)=0$ for $i=1,2, \ldots, n-1$.

By Lemma 3.1 and the arbitrary choice of $x_{o} \in \partial K_{1} \cap e_{1}^{\perp}, K_{1}$ is of class C^{1}.
Lemma 3.2. For fixed $z \in D_{1} \cap e_{1}^{\perp}$ and α and β as in (2.20), we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\alpha}{\beta}=-1 \tag{3.2}
\end{equation*}
$$

Proof. By (2.16) and $\underline{\ell}_{n} \in C^{2}$, for s_{1} as in (2.14), we have

$$
\begin{align*}
& \underline{\ell}_{n}(t, z)=\underline{\ell}_{n}\left(s_{1}, z\right)+0\left(t-s_{1}\right)+\frac{1}{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)\left(t-s_{1}\right)^{2}+o\left(\left(t-s_{1}\right)^{2}\right) \tag{3.3}\\
& \underline{\ell}_{n}(s, z)=\underline{\ell}_{n}\left(s_{1}, z\right)+0\left(s-s_{1}\right)+\frac{1}{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)\left(s-s_{1}\right)^{2}+o\left(\left(s-s_{1}\right)^{2}\right) \tag{3.4}
\end{align*}
$$

Let $\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)=c$. Since $\underline{\ell}_{n} \in C^{2}$ with positive definite Hessian matrix, we have $c>0$. By (3.3), (3.4) and $\underline{\ell}_{n}(t, z)=\underline{\ell}_{n}(s, z)$, we have

$$
\begin{equation*}
\frac{1}{2} c\left(t-s_{1}\right)^{2}+o\left(\left(t-s_{1}\right)^{2}\right)=\frac{1}{2} c\left(s-s_{1}\right)^{2}+o\left(\left(s-s_{1}\right)^{2}\right) . \tag{3.5}
\end{equation*}
$$

By (3.5) and $s, t \rightarrow s_{1}$ when $r \rightarrow 0^{+}$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\left(t-s_{1}\right)^{2}}{\left(s-s_{1}\right)^{2}}=1 \tag{3.6}
\end{equation*}
$$

By (2.20), (3.3), (3.4), (3.6) and $s<s_{1}<t$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\alpha}{\beta}=\lim _{r \rightarrow 0^{+}} \frac{c\left(s-s_{1}\right)+o\left(\left|s-s_{1}\right|\right)}{c\left(t-s_{1}\right)+o\left(\left|t-s_{1}\right|\right)}=-1 . \tag{3.7}
\end{equation*}
$$

Lemma 3.3. For fixed $z \in D_{1} \cap e_{1}^{\perp}$, for s, t and s_{1} as in (2.10), (2.11) and (2.14), and for $i=2, \ldots, n-1$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)}=\frac{2 \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial_{1}}\left(s_{1}, z\right)}{\frac{\partial^{2} \underline{n}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)}, \tag{3.8}
\end{equation*}
$$

where $\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)>0$.
Proof. First,

$$
\frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)}=\frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)}-\frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)} \cdot \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)} .
$$

Since $\underline{\ell}_{n} \in C^{2}$ with positive definite Hessian matrix, $\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)>0$. By $\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}, z\right)$ $=0$ and $s, t \rightarrow s_{1}$ when $r \rightarrow 0^{+}$, we have

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)} & =\lim _{s \rightarrow s_{1}} \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)\right) /\left(s-s_{1}\right)}{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}, z\right)\right) /\left(s-s_{1}\right)} \\
& =\frac{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right)}{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)} & =\lim _{t \rightarrow s_{1}} \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)\right) /\left(t-s_{1}\right)}{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}, z\right)\right) /\left(t-s_{1}\right)} \\
& =\frac{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right)}{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)}
\end{aligned}
$$

By the above three equalities, (2.20) and Lemma 3.2, we have

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}}{(t, z)} & \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)
\end{aligned} \lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)} .
$$

The next three lemmas give the explicit values of the second order partial derivatives of ϱ_{n} for $x \in D_{1} \backslash\left(D_{1} \cap e_{1}^{\perp}\right)$.
Lemma 3.4. For fixed $z \in D_{1} \cap e_{1}^{\perp}, r>0$ and s, t, α, β as in (2.10), (2.11) and (2.20), we have

$$
\begin{equation*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}}(r, z)=\frac{4 \alpha^{3}}{(\alpha-\beta)^{3}} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(t, z)-\frac{4 \beta^{3}}{(\alpha-\beta)^{3}} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z) \tag{3.9}
\end{equation*}
$$

Proof. By $t=\bar{\ell}_{1}\left(z, \varrho_{n}(r, z)\right)$ and (2.19), we have
(3.10) $\frac{\partial t}{\partial r}=\frac{\partial \bar{\ell}_{1}}{\partial x_{n}}\left(z, \varrho_{n}(r, z)\right) \cdot \frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)=\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)\right)^{-1} \cdot \frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)$.

By (3.10), (2.21) and (2.20), we have

$$
\begin{equation*}
\frac{\partial t}{\partial r}=\frac{2 \alpha}{\alpha-\beta} \tag{3.11}
\end{equation*}
$$

Similarly, by $s=\underline{\ell}_{1}\left(z, \varrho_{n}(r, z)\right)$, (2.18), (2.21) and (2.20), we have

$$
\begin{equation*}
\frac{\partial s}{\partial r}=\frac{2 \beta}{\alpha-\beta} \tag{3.12}
\end{equation*}
$$

By partial differentiation of (2.21) with respect to r, (2.20), (3.11) and (3.12), we have

$$
\begin{align*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}}(r, z) & =2 \frac{\left(\frac{\partial \alpha}{\partial r} \beta+\alpha \frac{\partial \beta}{\partial r}\right)(\alpha-\beta)-\alpha \beta\left(\frac{\partial \alpha}{\partial r}-\frac{\partial \beta}{\partial r}\right)}{(\alpha-\beta)^{2}} \\
& =2 \frac{\alpha^{2} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(t, z) \cdot \frac{\partial t}{\partial r}-\beta^{2} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z) \cdot \frac{\partial s}{\partial r}}{(\alpha-\beta)^{2}} \\
& =\frac{4 \alpha^{3}}{(\alpha-\beta)^{3}} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(t, z)-\frac{4 \beta^{3}}{(\alpha-\beta)^{3}} \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z) . \tag{3.13}
\end{align*}
$$

Lemma 3.5. For fixed $z \in D_{1} \cap e_{1}^{\perp}$, for $r>0$ and s, t, α, β as in (2.10), (2.11) and (2.20), and for $i=2,3, \ldots, n-1$, we have

$$
\begin{align*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{1} \partial x_{i}}(r, z)= & 2 \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)\right) \cdot\left(\alpha^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(t, z)-\beta^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z)\right)}{(\alpha-\beta)^{3}} \\
& +2 \frac{\alpha^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(t, z)-\beta^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(s, z)}{(\alpha-\beta)^{2}} . \tag{3.14}
\end{align*}
$$

Proof. By (2.12),

$$
\begin{equation*}
r=\frac{1}{2}(t-s)=\frac{1}{2} \bar{\ell}_{1}\left(z, x_{n}\right)-\frac{1}{2} \underline{\ell}_{1}\left(z, x_{n}\right), \tag{3.15}
\end{equation*}
$$

where $x_{n}=\varrho_{n}(r, z)$. Partial differentiation of (3.15) with respect to $x_{i}, i=$ $2, \ldots, n-1$, at (r, z) gives

$$
\begin{aligned}
0=\frac{1}{2} & \left(\frac{\partial \bar{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)+\frac{\partial \bar{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right) \cdot \frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)\right) \\
& -\frac{1}{2}\left(\frac{\partial \underline{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)+\frac{\partial \underline{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right) \cdot \frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)\right) .
\end{aligned}
$$

By (2.18), (2.19), (2.20) and the above equality, we have

$$
\begin{equation*}
\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)=\frac{\alpha \beta}{\alpha-\beta}\left(\frac{\partial \underline{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)-\frac{\partial \bar{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)\right) . \tag{3.16}
\end{equation*}
$$

By the chain rule, $x_{n}=\underline{\ell}_{n}(s, z)=\underline{\ell}_{n}(t, z)$, (2.14), (2.16), (2.18), (2.19) and (2.20),

$$
\begin{equation*}
\frac{\partial \bar{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)=-\frac{\partial \bar{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right) \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)=-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z) / \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)=-\frac{1}{\beta} \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z) \tag{3.17}
\end{equation*}
$$

and
(3.18)

$$
\frac{\partial \underline{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)=-\frac{\partial \underline{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right) \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)=-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z) / \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)=-\frac{1}{\alpha} \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z) .
$$

Putting (3.17) and (3.18) into (3.16), we obtain

$$
\begin{equation*}
\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)=\frac{\alpha}{\alpha-\beta} \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\beta}{\alpha-\beta} \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z) . \tag{3.19}
\end{equation*}
$$

By $t=\bar{\ell}_{1}\left(z, x_{n}\right), x_{n}=\varrho_{n}(r, z)$, (2.19), (2.20), (3.17) and (3.19), we have
(3.20) $\frac{\partial t}{\partial x_{i}}\left(z, x_{n}\right)=\frac{\partial \bar{\ell}_{1}}{\partial x_{i}}\left(z, x_{n}\right)+\frac{\partial \bar{\ell}_{1}}{\partial x_{n}}\left(z, x_{n}\right) \cdot \frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)=\frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)}{\alpha-\beta}$.

Similarly, we have

$$
\begin{equation*}
\frac{\partial s}{\partial x_{i}}\left(z, x_{n}\right)=\frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)}{\alpha-\beta} \tag{3.21}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\frac{\partial \alpha}{\partial x_{i}}=\frac{\partial\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)\right)}{\partial x_{i}}=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z) \cdot \frac{\partial s}{\partial x_{i}}\left(z, x_{n}\right)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(s, z) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \beta}{\partial x_{i}}=\frac{\partial\left(\frac{\partial \underline{\underline{\ell}}_{n}}{\partial x_{1}}(t, z)\right)}{\partial x_{i}}=\frac{\partial^{2} \underline{\underline{\ell}}_{n}}{\partial x_{1}^{2}}(t, z) \cdot \frac{\partial t}{\partial x_{i}}\left(z, x_{n}\right)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(t, z) . \tag{3.23}
\end{equation*}
$$

By (2.20), (3.20), (3.21), (3.22) and (3.23), partial differentiation of (2.21) with respect to x_{i} at (r, z), we have

$$
\begin{aligned}
\frac{\partial^{2} \varrho_{n}}{\partial x_{1} \partial x_{i}}(r, z)= & 2 \frac{\left(\frac{\partial \alpha}{\partial x_{i}} \beta+\alpha \frac{\partial \beta}{\partial x_{i}}\right)(\alpha-\beta)-\alpha \beta\left(\frac{\partial \alpha}{\partial x_{i}}-\frac{\partial \beta}{\partial x_{i}}\right)}{(\alpha-\beta)^{2}} \\
= & 2 \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)\right) \cdot\left(\alpha^{2} \frac{\partial^{2} \ell_{n}}{\partial x_{1}^{2}}(t, z)-\beta^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z)\right)}{(\alpha-\beta)^{3}} \\
& +2 \frac{\alpha^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(t, z)-\beta^{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(s, z)}{(\alpha-\beta)^{2}}
\end{aligned}
$$

Lemma 3.6. For fixed $z \in D_{1} \cap e_{1}^{\perp}$, for $r>0$ and s, t, α, β as in (2.10), (2.11) and (2.20), and for $i, j=2,3, \ldots, n-1$, we have

$$
\begin{align*}
& \frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z) \tag{3.24}\\
&= \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\underline{x_{i}}}(s, z)\right) \cdot\left(\frac{\partial \ell_{n}}{\partial x_{j}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{j}}(s, z)\right) \cdot\left(\alpha \frac{\partial^{2} \ell_{n}}{\partial x_{1}^{2}}(t, z)-\beta \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}(s, z)\right)}{(\alpha-\beta)^{3}} \\
&+\frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{j}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{j}}(s, z)\right) \cdot\left(\alpha \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(t, z)-\beta \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}(s, z)\right)}{(\alpha-\beta)^{2}} \\
&+\frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)\right) \cdot\left(\alpha \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{j}}(t, z)-\beta \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{j}}(s, z)\right)}{(\alpha-\beta)^{2}} \\
&+\frac{\alpha \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(t, z)-\beta \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(s, z)}{\alpha-\beta} .
\end{align*}
$$

Proof. First, we have

$$
\begin{equation*}
\frac{\partial\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)\right)}{\partial x_{j}}(r, z)=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}(t, z) \frac{\partial t}{\partial x_{j}}\left(z, x_{n}\right)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(t, z) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)\right)}{\partial x_{j}}(r, z)=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}(s, z) \frac{\partial s}{\partial x_{j}}\left(z, x_{n}\right)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(s, z) . \tag{3.26}
\end{equation*}
$$

By (3.25) and (3.26), partial differentiation of (3.19) with respect to x_{j} at (r, z) gives that

$$
\begin{aligned}
\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z) & =\frac{\partial\left(\frac{\alpha}{\alpha-\beta}\right)}{\partial x_{j}} \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)+\frac{\alpha}{\alpha-\beta}\left(\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(t, z)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}(t, z) \frac{\partial t}{\partial x_{j}}\right) \\
& -\frac{\partial\left(\frac{\beta}{\alpha-\beta}\right)}{\partial x_{j}} \cdot \frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\beta}{\alpha-\beta}\left(\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}(s, z)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}(s, z) \frac{\partial s}{\partial x_{j}}\right) .
\end{aligned}
$$

By (3.20), (3.21), (3.22), (3.23), the right side of the above equality equals the right side of (3.24).

The following lemma gives the explicit values of the second order partial derivatives of ϱ_{n} for $x \in D_{1} \cap e_{1}^{\perp}$.

Lemma 3.7. For fixed $z \in D_{1} \cap e_{1}^{\perp}$, for s_{1} as in (2.14) and $i, j=2, \ldots, n-1$, we have

$$
\frac{\partial^{2} \varrho_{n}}{\partial x_{1} \partial x_{i}}(0, z)=0=\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{1}}(0, z),
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}\left(s_{1}, z\right)-\frac{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{i}}\left(s_{1}, z\right) \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{j}}\left(s_{1}, z\right)}{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)} . \tag{3.29}
\end{equation*}
$$

Proof. Since $\frac{\partial \varrho_{n}}{\partial x_{1}}(0, z)=0$ and $\frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)$ is an odd function with respect to r, by (2.21) we have
(3.30) $\frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}}(0, z)=\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \varrho_{n}}{\partial x_{1}}(r, z)-\frac{\partial \varrho_{n}}{\partial x_{1}}(0, z)}{r}=\lim _{r \rightarrow 0} \frac{2 \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z) \frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z) / r^{2}}{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z) / r-\frac{\partial \ell_{n}}{\partial x_{1}}(t, z) / r}$.

By (3.6) and $2 r=\left(t-s_{1}\right)+\left(s_{1}-s\right)$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{t-s_{1}}{r}=\lim _{r \rightarrow 0^{+}} \frac{s_{1}-s}{r}=1 \tag{3.31}
\end{equation*}
$$

By (2.16) and (3.31), we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)}{r}=\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}, z\right)}{t-s_{1}}=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right) . \tag{3.32}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}(s, z)}{r}=-\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right) . \tag{3.33}
\end{equation*}
$$

By (3.30), (3.32) and (3.33), we have

$$
\begin{equation*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}}(0, z)=\frac{-2\left(\frac{\partial^{2} \ell_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)\right)^{2}}{-2 \frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)}=\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right) \tag{3.34}
\end{equation*}
$$

Since $\frac{\partial \varrho_{n}}{\partial x_{1}}(0, z)=0$ for any $z \in D_{1} \cap e_{1}^{\perp}, \frac{\partial^{2} \varrho_{n}}{\partial x_{1} \partial x_{i}}(0, z)=0$ is established.
Since ϱ_{n} and $\underline{\ell}_{n}$ are C^{1}, by (3.19) and (3.2) we have

$$
\begin{equation*}
\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)=\lim _{r \rightarrow 0^{+}} \frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)=\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right) \tag{3.35}
\end{equation*}
$$

By (3.19), (3.35), (3.2), (3.31) and $\underline{\ell}_{n} \in C^{2}$, we have

$$
\begin{aligned}
& \lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)-\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)}{r} \\
= & \lim _{r \rightarrow 0^{+}} \frac{\frac{\alpha}{\alpha-\beta}\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)\right)-\frac{\beta}{\alpha-\beta}\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)\right)}{r} \\
= & \frac{1}{2} \lim _{t \rightarrow s_{1}^{+}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(t, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{t-s_{1}}-\frac{1}{2} \lim _{s \rightarrow s_{1}^{-}} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}(s, z)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}, z\right)}{s-s_{1}} \\
= & \frac{1}{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right)-\frac{1}{2} \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right) \\
(3.36)= & 0 .
\end{aligned}
$$

Moreover, since $\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)$ is an even function with respect to r, by (3.36)
(3.37) $\lim _{r \rightarrow 0^{-}} \frac{\frac{\partial \varrho_{n}}{\frac{\partial x_{i}}{}(r, z)-\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)}}{r}=-\lim _{r \rightarrow 0^{+}} \frac{\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)-\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)}{r}=0$.

By (3.36) and (3.37), we have

$$
\begin{equation*}
\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{1}}(0, z)=\lim _{r \rightarrow 0} \frac{\frac{\partial \varrho_{n}}{\partial x_{i}}(r, z)-\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)}{r}=0 \tag{3.38}
\end{equation*}
$$

By (3.35) and $\underline{\ell}_{n} \in C^{2}$, we have

$$
\begin{aligned}
\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)= & \lim _{\varepsilon \rightarrow 0} \frac{\frac{\partial \varrho_{n}}{\partial x_{i}}\left(0, z+\varepsilon e_{j}\right)-\frac{\partial \varrho_{n}}{\partial x_{i}}(0, z)}{\varepsilon} \\
= & \lim _{\varepsilon \rightarrow 0} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}\left(z+\varepsilon e_{j}\right), z+\varepsilon e_{j}\right)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}(z), z\right)}{\varepsilon} \\
= & \lim _{\varepsilon \rightarrow 0} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}\left(z+\varepsilon e_{j}\right), z+\varepsilon e_{j}\right)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}\left(z+\varepsilon e_{j}\right), z\right)}{\varepsilon} \\
& +\lim _{\varepsilon \rightarrow 0} \frac{\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}\left(z+\varepsilon e_{j}\right), z\right)-\frac{\partial \underline{\ell}_{n}}{\partial x_{i}}\left(s_{1}(z), z\right)}{\varepsilon} \\
= & \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}\left(s_{1}, z\right)+\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right) \cdot \lim _{\varepsilon \rightarrow 0} \frac{s_{1}\left(z+\varepsilon e_{j}\right)-s_{1}(z)}{\varepsilon} \\
= & \frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}\left(s_{1}, z\right)-\frac{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{1}}\left(s_{1}, z\right) \cdot \frac{\partial^{2} \underline{\ell}_{n}}{\partial \underline{l}_{1} \partial x_{j}}\left(s_{1}, z\right)}{\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right)},
\end{aligned}
$$

where the last equality is obtained from

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0^{+}} \frac{s_{1}\left(z+\varepsilon e_{j}\right)-s_{1}(z)}{\varepsilon} \tag{3.40}\\
= & \left.\left.-\lim _{\varepsilon \rightarrow 0^{+}} \frac{\left(\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}(z), z+\varepsilon e_{j}\right)-\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}(z), z\right)\right) / \varepsilon}{\partial x_{1}}\left(z e_{j}\right), z+\varepsilon e_{j}\right)-\frac{\partial \underline{\ell}_{n}}{\partial x_{1}}\left(s_{1}(z), z+\varepsilon e_{j}\right)\right) /\left(s_{1}\left(z+\varepsilon e_{j}\right)-s_{1}(z)\right) \\
= & -\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{1} \partial x_{j}}\left(s_{1}, z\right) / \frac{\partial^{2} \underline{\underline{l}}_{n}}{\partial x_{1}^{2}}\left(s_{1}, z\right) .
\end{align*}
$$

Lemmas 3.4 3.7 show the existence of $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(x), 1 \leq i, j \leq n-1$, for $x \in D_{1}$. We will prove the continuity of $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}$ at the origin and prove that ϱ_{n} has positive definite Hessian matrix at the origin.
Lemma 3.8. For $i, j=1,2, \ldots, n-1$ and any fixed compact set $S \subset D_{1} \cap e_{1}^{\perp}$, $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z)$ converges to $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)$ uniformly on S as $r \rightarrow 0$.
Proof. By Lemmas 3.2 3.3 and Lemma 3.7, taking the limit of $r \rightarrow 0^{+}$in (3.9), (3.14) and (3.24) shows that $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z)$ converges to $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)$ pointwise on S as $r \rightarrow 0^{+}$. Moreover, since ϱ_{n} is symmetric with respect to e_{1}^{\perp}, for $i, j=2, \ldots, n-1$, $\frac{\partial^{2} \varrho_{n}}{\partial x_{1}^{2}(r, z)}$ and $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z)$ are even with respect to r and $\frac{\partial^{2} \varrho_{n}}{\partial x_{1} \partial x_{i}}(r, z)$ is odd with respect to r. Therefore, $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z)$ converges to $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)$ pointwise on S as $r \rightarrow 0$.

Since $\left|s-s_{1}\right|+\left|t-s_{1}\right|=2 r$ is independent of z and the second partial derivative of $\underline{\ell}_{n}$ is uniformly continuous on any compact subset of D, the left sides of the equalities (3.2) and (3.8) converge uniformly to their right sides, respectively. By (3.9), (3.14), (3.24) and the uniformly continuity of $\frac{\partial^{2} \underline{\ell}_{n}}{\partial x_{i} \partial x_{j}}$, we have that $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(r, z)$ converges to $\frac{\partial^{2} \varrho_{n}}{\partial x_{i} \partial x_{j}}(0, z)$ uniformly on S as $r \rightarrow 0$.

Proposition 3.1. The second partial derivatives of ϱ_{n} are continuous at the origin. Proof. For $z \in D_{1} \cap e_{1}^{\perp}$, if $z \rightarrow 0$, then $s_{1}(z) \rightarrow s_{1}(0)$. By (3.27), (3.28), (3.29) and $\underline{\ell}_{n} \in C^{2}$, the second partial derivatives of ϱ_{n} are continuous at the origin when $z \in D_{1} \cap e_{1}^{\perp}$ and $z \rightarrow 0$. By the uniform convergence proved in Lemma 3.8 the second partial derivatives of ϱ_{n} are continuous at the origin when $x \in D_{1}$ and $x \rightarrow 0$.

Proposition 3.2. The Hessian matrix of ϱ_{n} at the origin is positive definite.
Proof. Let $A=\left(a_{i j}\right)_{n-1, n-1}$ denote the Hessian matrix of ϱ_{n} at the origin and let $B=\left(b_{i j}\right)_{n-1, n-1}$ denote the Hessian matrix of $\underline{\ell}_{n}$ at the point $\left(s_{1}, 0\right)$. By (3.27), (3.28), (3.29), the k th row $(k=2, \ldots, n-1)$ of A can be obtained by adding the k th row of B by $-\frac{b_{k 1}}{b_{11}}$ times the first row of B. Thus $|A|=|B|$. Since $|B|>0$, $|A|>0$. Moreover, ϱ_{n} is a convex function, so its Hessian matrix A is semi-positive definite. By $|A|>0, A$ is positive definite.

By Proposition 3.1, Proposition 3.2 and the arbitrary choice of $x_{o} \in \partial K_{1} \cap e_{1}^{\perp}$, K_{1} is of class C_{+}^{2}.

4. Open problems

Problem 4.1. For $3 \leq k \leq \infty$, is the Steiner symmetral of a convex body of class C_{+}^{k} again of class C_{+}^{k} ?

The following problem is provided by the referee.
Problem 4.2. Can Theorem 1.1 be obtained simply from Corollary 1.2?

Acknowledgments

The author would like to thank the referee for the many suggested improvements and a careful and thoughtful reading of the original draft of this paper. The author would also like to thank Professor Gaoyong Zhang for suggesting this problem, and for many helpful discussions.

References

[1] Wilhelm Blaschke, Kreis und Kugel (German), Walter de Gruyter \& Co., Berlin, 1956. 2te Aufl. MR0077958
[2] Gabriele Bianchi, Richard J. Gardner, and Paolo Gronchi, Symmetrization in geometry, Adv. Math. 306 (2017), 51-88, DOI 10.1016/j.aim.2016.10.003. MR3581298
[3] Gabriele Bianchi and Paolo Gronchi, Steiner symmetrals and their distance from a ball, Israel J. Math. 135 (2003), 181-192, DOI 10.1007/BF02776056. MR1997042
[4] Gabriele Bianchi, Daniel A. Klain, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A countable set of directions is sufficient for Steiner symmetrization, Adv. in Appl. Math. 47 (2011), no. 4, 869-873, DOI 10.1016/j.aam.2011.04.005. MR2832382
[5] Károly J. Böröczky, Stronger versions of the Orlicz-Petty projection inequality, J. Differential Geom. 95 (2013), no. 2, 215-247. MR3128983
[6] A. Burchard, Steiner symmetrization is continuous in $W^{1, p}$, Geom. Funct. Anal. 7 (1997), no. 5, 823-860, DOI 10.1007/s000390050027. MR 1475547
[7] R. J. Gardner, Symmetrals and X-rays of planar convex bodies, Arch. Math. (Basel) 41 (1983), no. 2, 183-189, DOI 10.1007/BF01196876. MR719423
[8] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355-405, DOI 10.1090/S0273-0979-02-00941-2. MR 1898210
[9] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR2251886
[10] P. M. Gruber and M. Ludwig, A Helmholtz-Lie type characterization of ellipsoids. II, Discrete Comput. Geom. 16 (1996), no. 1, 55-67, DOI 10.1007/BF02711133. MR1397787
[11] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR2335496
[12] Christer O. Kiselman, How smooth is the shadow of a smooth convex body?, J. London Math. Soc. (2) 33 (1986), no. 1, 101-109, DOI 10.1112/jlms/s2-33.1.101. MR829391
[13] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, L_{p} affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111-132. MR 1863023
[14] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220-242, DOI 10.1016/j.aim.2009.08.002. MR2563216
[15] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365-387. MR2652465
[16] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR3155183
[17] Giorgio Talenti, The standard isoperimetric theorem, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 73-123, DOI 10.1016/B978-0-444-89596-7.50008-0. MR 1242977

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China - and - Department of Mathematics, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, New York 11201

E-mail address: lxyoujiang@126.com
E-mail address: yjl432@nyu.edu

[^0]: Received by the editors November 20, 2016 and, in revised form, January 26, 2017. 2010 Mathematics Subject Classification. Primary 52A20.
 Key words and phrases. Steiner symmetrization, C^{2} convex body, Gauss curvature.
 Research of the author was supported by the funds of cstc2015jcyjA00009, cstc2013jcyjA20015 and Scientific and Technological Research Program of Chongqing Municipal Education Commission KJ1500628 and KJ110712, Scientific research funds of Chongqing Technology and Business University 2015-56-02.

