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FINITE ORBITS FOR NILPOTENT ACTIONS ON THE TORUS

S. FIRMO AND J. RIBÓN

(Communicated by Yingfei Yi)

Abstract. A homeomorphism of the 2-torus with Lefschetz number different
from zero has a fixed point. We give a version of this result for nilpotent groups
of diffeomorphisms. We prove that a nilpotent group of 2-torus diffeomorphims
has finite orbits when the group has some element with Lefschetz number
different from zero.

1. Introduction

Abelian groups of isotopic to the identity C1- diffeomorphisms of closed ori-
entable surfaces different from the 2-sphere and the 2-torus have global fixed points
[10]; i.e. there exists a common fixed point for all elements of the group. They also
prove that if the surface is the 2-sphere, then such groups have finite orbits with
at most two elements [9]. This result was generalized to nilpotent groups by the
second author [19]. The situation is different for the 2-torus T2 since there are
isotopic to the identity diffeomorphisms with no finite orbits. For instance consider
the diffeomorphism φ̃ : R2 → R2 defined by φ̃(x, y) = (x +

√
2, y). It induces a

holomorphic diffeomorphism φ : R2/Z2 → R2/Z2 without finite orbits.
In this context when the surface is different from the 2-torus the existence of

global fixed points or finite orbits is essentially imposed by the surface topology and
the dynamics of the nilpotent (or abelian) relation on the group. Several papers
have focused on this issue such as [16, 18] for abelian and nilpotent connected Lie
groups respectively, [1–3,6,9,10,12] for abelian groups and [5,8,19] for the nilpotent
ones.

In order to find finite orbits for the 2-torus T2 we need to impose more conditions
on the groups other than the nilpotent property. The conditions can be of either
topological nature or a more dynamical type. In this article we obtain finite orbits
through the former approach. The latter point of view is studied in the forthcoming
article “Global fixed points for nilpotent actions on the torus” (cf. [7]).

A natural topological condition on G ⊂ Diff1(T2) to obtain finite orbits is the
existence of some element in G whose Lefschetz number is different from zero.
Such property plays the role of a rigidity condition on the nilpotent group G. It
allows us to show the following result.
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Theorem 1.1. Let G be a nilpotent subgroup of Diff1(T2) . If G has some element
whose Lefschetz number is different from zero, then G has a finite orbit.

Here, Diff1(T2) denotes the set of C1-diffeomorphisms of the 2-torus.
The Lefschetz fixed point theorem guarantees a fixed point for each element of

G whose Lefschetz number is different from zero. But the existence of such an
element is not sufficient to guarantee a global fixed point since for instance G may
have some elements without fixed points. This is the case for the abelian subgroup
G of Diff1( S1× S1) generated by the maps

ψ(z1, z2) = (z̄1, z̄2) and φ(z1, z2) = (−z1,−z2) where z1, z2 ∈ S1 ⊂ C.

In this example φ has no fixed point and the Lefschetz number of ψ is equal to 4.
Theorem 1.1 provides a natural version, in the torus T2 and for the C1- differen-

tiability class, of some result proved by Ghys for the 2-sphere in the analytic case.
In [11] Ghys proves the following theorem.

Theorem (Ghys). Nilpotent groups of real analytic diffeomorphisms of S2 have
finite orbits.

Naturally, in the result of Ghys, the identity map is an element with Lefschetz
number different from zero. The arguments in the proofs of these two results are
very different, and it is not clear at all how to generalize the real analytic arguments
to the C1 case for S2 or other closed orientable surfaces with Euler characteristic
different from zero.

At the end of this article we present versions of Theorem 1.1 for the cases where
the surface is the Klein bottle, the compact annulus and the compact Möbius strip.

Given a homeomorphism ψ of T2 , we denote by L(ψ) the Lefschetz number of
ψ. Let us remark that the class of ψ in the mapping class group of the torus can
be identified with a matrix [ψ] in GL(2 ,Z). The following elementary property
will be key in the proof of Theorem 1.1.

Lemma 1.2. The Lefschetz number of a homeomorphism ψ of T2 is different
from zero if and only if 1 /∈ spec[ψ] .

Proof. Since L(ψ) = det(Id− [ψ]) for tori in any dimension (cf. [4]), we conclude
that L(ψ) vanishes if and only if 1 ∈ spec[ψ]. �

The condition 1 /∈ spec[ψ] induces some rigidity phenomena for ψ since in such
a case the identity map is the unique deck transformation that commutes with
ψ̃ (cf. Lemma 3.1) where ψ̃ is a lift of ψ to the universal covering R2 of T2.

In particular the set Fix(ψ̃) of fixed points of ψ̃ will be an (eventually empty)
compact set by Lemma 3.7.

In order to show Theorem 1.1 it suffices to find a finite index normal subgroup
of G that has a global fixed point. For this we choose a convenient ψ ∈ G with
L(ψ) �= 0 and a lift ψ̃ such that Fix(ψ̃) �= ∅. We use the property 1 /∈ spec[ψ]
and the description of the nilpotent subgroups of GL(2 ,Z) to obtain a nilpotent

subgroup H̃ of diffeomorphisms of R2 consisting of lifts of elements of a finite
index normal subgroup H of G. Moreover we can suppose ψ̃ ∈ H̃. Since Fix(ψ̃)

is a non-empty compact set, H̃ has a global fixed point by Theorem 1.4 of [19] (cf.
Theorem 2.4). Hence H has a global fixed point.
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2. Preliminaries

This section is devoted to introducing some definitions and notation. For later
reference, we also present the classification of nilpotent subgroups of the mapping
class group of T2.

Definition 2.1. In the rest of this article Fix(f) denotes the set of fixed points
of the map f . If L is a family of maps we note Fix(L) :=

⋂
f∈L Fix(f). We say

that Fix(L) is the set of global fixed points of the family L.

Let G be a group and H be a subgroup of G. We denote by [H,G ] the
subgroup of G generated by the elements of the form [h , g ] = hgh−1g−1 where
h ∈ H and g ∈ G. If H is a normal subgroup of G, then [H,G ] is a subgroup of
H which is normal in G.

Given a group G let us consider the upper central series {Z(n)(G)}n≥0 of G,

Z(n+1)(G) :=
{
g ∈ G ; [ g , f ] ∈ Z(n)(G) for all f ∈ G

}
,

where Z(0)(G) is the trivial subgroup of G. The members of the upper central
series are characteristic subgroups of G. In particular they are normal subgroups
of G and we have

Z(0)(G) ⊂ Z(1)(G) ⊂ · · · ⊂ Z(n)(G) ⊂ · · · ⊂ G.

If Z(n)(G) = G for some n ∈ Z≥0 we say that G is a nilpotent group. The

smallest n ∈ Z≥0 such that Z(n)(G) = G is the nilpotency class of G.
We denote by Homeo(M) and Homeo0(M) the group of homeomorphisms of

a manifold M and its subgroup of homeomorphisms isotopic to the identity map
respectively.

Definition 2.2. Let [ ] : Homeo(T2) → MCG(T2) = GL(2 ,Z) be the map associ-
ating to an element of Homeo(T2) its image in the mapping class group. Given a
subgroup G of Homeo(T2) we denote by [G] the image of G by [ ].

Nilpotent subgroups of Homeo(T2) induce nilpotent subgroups of the mapping
class group of T2, i.e. nilpotent subgroups of GL(2 ,Z). We will need a classification
of such groups in order to study rotational properties. They are virtually cyclic and
metabelian. Moreover, there exists a unique example of a non-abelian group, up to
conjugacy.

Lemma 2.3. Let G be a nilpotent subgroup of MCG(T2) . Then G is either of
the form 〈N〉 or 〈N ,−N〉 for some N ∈ G or it is conjugated by a matrix in
GL(2 ,Q) to the group

H :=

{(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
0 −1
1 0

)
,

(
0 1

−1 0

)
,

(
0 1
1 0

)
,

(
0 −1

−1 0

)}
.

The group H is isomorphic to the dihedral group D4. We are admitting orien-
tation-reversing classes in the mapping class group. Notice that if all classes are
orientation-preserving, then G is abelian. We did not find a proof of the above
lemma in the literature and for sake of clarity we will prove it in Appendix A.
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Conventions. From now on, we make the following conventions. A homeomorphism
ψ̃ ∈ Homeo(R2) always denotes a lift to the universal covering of ψ ∈ Homeo(T2)
and vice-versa. Moreover, π : R2 → T2 denotes the universal covering map, and
unless explicitly stated otherwise a lift means a lift to the universal covering.

Let G be a subgroup of Homeo(T2). We say that a subgroup G̃ of Homeo(R2)

is a lift of G if any element φ̃ of G̃ is a lift of some element φ of G and the natural
projection κ : G̃ → G defined by κ

(
φ̃
)
= φ is an isomorphism of groups. Let us

remark that the definition of lift for groups is more restrictive than the definition
for single homeomorphisms. The translation T(0,1) is a lift of the identity map of

T2, but the group 〈T(0,1)〉 is not a lift of the group {Id}.
Now we introduce a result proved by the second author in [19] that will be used

to find global fixed points of nilpotent groups of diffeomorphisms of the torus.

Theorem 2.4. Let G be a nilpotent subgroup of Diff1
+(R

2) such that Fix(φ) is a
non-empty compact set for some φ ∈ G. Then G has a global fixed point.

In the above theorem, Diff1
+(R

2) denotes the set of C1 orientation-preserving
diffeomorphisms of R2.

3. Rotational properties

Let us introduce rotation vectors for φ ∈ Homeo0(T
2). Following [17], the rota-

tion vectors of a lift φ̃ are the limits of sequences of the form

φ̃nk(x̃k)− x̃k

nk

where (nk)k≥1 is an increasing sequence of positive integers and (x̃k)k≥1 is a

sequence of points in R2. This set will be denoted by ρ
(
φ̃
)
. We know from [17]

that it is a non-empty compact and convex subset of R2.
Equivalently we know that ρ

(
φ̃
)
=

{
ρμ

(
φ̃
)
; μ ∈ P(φ)

}
where P(φ) is the set

of φ-invariant Borel probability measures and

ρμ
(
φ̃
)
:=

∫
T2

(
φ̃− Id

)
dμ .

Notice that since φ belongs to Homeo0(T
2) then φ̃ commutes with the covering

transformations and φ̃ − Id descends to a well-defined map in T2. The set ρ
(
φ̃
)

depends on the lift φ̃ of φ, but it satisfies ρ
(
Tv ◦ φ̃

)
= Tv

(
ρ
(
φ̃
))

where Tv is the

translation in R2 by the vector v ∈ Z2. In particular the projection ρ(φ) of ρ
(
φ̃
)

in T2 = R2/Z2 depends on φ, but it does not depend on the lift φ̃ of φ. In what
follows we will be using frequently the next two well known results.

Lemma 3.1. Let φ ∈ Homeo0(T
2) , μ ∈ P(φ) and ψ ∈ Homeo(T2) . For all lifts

to the universal covering φ̃ and ψ̃ of φ and ψ respectively, we have

ψ̃ ◦ Tv = T[ψ](v) ◦ ψ̃ and [ψ]
(
ρμ

(
φ̃
))

= ρν
(
ψ̃ ◦ φ̃ ◦ ψ̃−1

)
where v ∈ Z2 and ν = ψ∗(μ) .

Lemma 3.2. Consider the subgroup Homeo0,μ(T
2) of Homeo0(T

2) whose ele-

ments preserve a probability measure μ and let H̃omeo0,μ(R
2) be the subgroup of
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Homeo0(R
2) consisting of all the lifts of elements of Homeo0,μ(T

2). Then the map

ρμ : H̃omeo0,μ(R
2) → R2 is a morphism of groups.

The proof is obtained by a change of variable argument.
Let G be a subgroup of Homeo(T2) . We denote by G0 the subgroup of isotopic

to the identity elements of G. By P(G) we denote the set
⋂

ψ∈G P(ψ) of G-

invariant Borel probability measures. We say that an element φ ∈ G0 is P(G)-

irrotational if P(G) �= ∅ and there exists a lift φ̃ ∈ Homeo0(R
2) of φ such that

ρμ(φ̃) = (0 , 0) for all μ ∈ P(G).
We define GI as the set of all the elements of G0 that are P(G)-irrotational

i.e.

GI :=
{
φ ∈ G0 ; ∃ a lift φ̃ s.t. ρμ(φ̃) = (0 , 0) for all μ ∈ P(G)

}
.

Moreover, it follows from Lemmas 3.1 and 3.2 that GI is a normal subgroup of G
if P(G) is non-empty.

Now we introduce some new notation. Suppose we are given μ ∈ P(G). Follow-

ing the convention about φ̃ and φ we define the following sets :

Gμ
I :=

{
φ ∈ G0 ; ∃ a lift φ̃ s.t. ρμ

(
φ̃
)
= (0 , 0)

}
;

G̃μ
I :=

{
φ̃ ∈ Homeo0(R

2) ; φ ∈ G0 and ρμ
(
φ̃
)
= (0 , 0)

}
;

G̃I :=
{
φ̃ ∈ Homeo0(R

2) ; φ ∈ G0 and ρν
(
φ̃
)
= (0 , 0) for all ν ∈ P(G)

}
,

and we have

G̃I =
⋂

ν∈P(G)

G̃ν
I .(3.2.1)

Since ρμ : H̃omeo0,μ(R
2) → R2 is a morphism of groups, G̃μ

I and G̃I
(
resp. Gμ

I
and GI

)
are subgroups of Homeo0(R

2)
(
resp. Homeo0(T

2)
)
. Moreover, we have

that G̃I and G̃μ
I are lifts of GI and Gμ

I respectively, since the natural projections

φ̃ ∈ G̃μ
I

κ−→ φ ∈ Gμ
I and φ̃ ∈ G̃I

κ−→ φ ∈ GI are isomorphisms.
Clearly, we also have GI ⊂ Gμ

I for any μ ∈ P(G) . Notice that P(G) is non-
empty if G is an amenable group. In particular P(G) is non-empty ifG is a nilpotent
group.

In the remainder of this section we will see that the P(G)-irrotational subgroup
GI of a nilpotent group G ⊂ Homeo(T2) is well-behaved with respect to lifts. In
particular, if G has an element with Lefschetz number different from zero, then we
can even show the existence of a finite G-orbit (cf. Theorem 3.9).

Our goal in the remainder of this section is relating the rotational properties of
a nilpotent group to the existence of lifts.

Lemma 3.3. Let G be a subgroup of Homeo(T2) and let Ĝ ⊂ Homeo(R2) be the

subgroup of all lifts of elements of G. If μ ∈ P(G), then G̃μ
I , G̃I and Gμ

I , GI are

normal subgroups of Ĝ and G respectively.

Proof. Let φ̃ ∈ G̃μ
I and ψ̃ ∈ Ĝ. By definition and convention we conclude that

φ ∈ G0 , ρμ
(
φ̃
)
= ( 0 , 0 ) and ψ ∈ G. Then ψ̃◦ φ̃◦ ψ̃−1 is a lift of ψ◦φ◦ψ−1 ∈ G0 .

Since μ ∈ P(G) it follows from Lemma 3.1 that

ρμ
(
ψ̃ ◦ φ̃ ◦ ψ̃−1

)
= [ψ]

(
ρμ(φ̃)

)
= (0 , 0).
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Consequently we have that ψ̃ ◦ φ̃ ◦ ψ̃−1 ∈ G̃μ
I and ψ ◦ φ ◦ ψ−1 ∈ Gμ

I . As a

consequence of relation (3.2.1) the groups G̃I and GI are normal subgroups of Ĝ
and G respectively. �

The existence of lifts for normal subgroups can be interpreted in terms of G-
invariant measures when L(ψ) �= 0 for some ψ ∈ G.

Proposition 3.4. Let G be a nilpotent subgroup of Homeo(T2) and let ψ ∈ G

such that L(ψ) �= 0 . Fix a lift ψ̃ of ψ and μ ∈ P(G). Consider a normal subgroup

H of G with H ⊂ G0 . Then H has a lift H̃ such that ψ̃ H̃ ψ̃−1 = H̃ if and only
if H ⊂ Gμ

I . In such a case we have H̃ ⊂ G̃μ
I .

Since H consists of isotopic to the identity homeomorphisms, for a fixed ψ ∈ G
we have that ψ̃ ◦ φ̃ ◦ ψ̃−1 does not depend on the choice of the lift ψ̃ of ψ when
φ ∈ H. Consequently, the condition ψ̃ H̃ ψ̃−1 = H̃ does not depend on the choice
of the lift ψ̃ of ψ.

Proof. First, if H ⊂ Gμ
I , then H̃ = κ−1(H) is a lift of H since the natural

projection κ : G̃μ
I → Gμ

I is an isomorphism. Consider any h̃ ∈ H̃. We denote

h = κ(h̃). From Lemma 3.3 we know that the lift ψ̃ ◦ h̃ ◦ ψ̃−1 of ψ ◦ h ◦ ψ−1 is

in G̃μ
I and we have κ(ψ̃ ◦ h̃ ◦ ψ̃−1) = ψ ◦ h ◦ ψ−1. Since H is normal in G we

have ψ ◦h ◦ψ−1 ∈ H and then ψ̃ ◦ h̃ ◦ ψ̃−1 ∈ H̃ by definition of H̃. Consequently,
ψ̃ H̃ ψ̃−1 = H̃ .

Now let us suppose that H ⊂ G0 admits a lift H̃ such that ψ̃ H̃ ψ̃−1 = H̃ .
We want to prove that ρμ(h̃) = (0 , 0) for any h̃ ∈ H̃. For this it suffices to show

by induction on j that ρμ
(
h̃
)
= (0 , 0) for any h̃ ∈ H̃ such that h ∈ Hj where

Hj = Z(j)(G) ∩H and j ≥ 0 .
The result is obvious for j = 0. Suppose it holds true for some j ≥ 0 and

consider h̃ ∈ H̃ with h ∈ Hj+1. In that case the map ψ ◦ h ◦ ψ−1 ◦ h−1 belongs
to Hj for any ψ ∈ G. Moreover we have that ψ̃ ◦ h̃ ◦ ψ̃−1 ◦ h̃−1 is contained in H̃
by hypothesis and we obtain

(0 , 0) = ρμ
(
ψ̃ ◦ h̃ ◦ ψ̃−1 ◦ h̃−1

)
= ρμ

(
ψ̃ ◦ h̃ ◦ ψ̃−1

)
+ ρμ

(
h̃−1

)
= [ψ]

(
ρμ

(
h̃
))

− ρμ
(
h̃
)
=

(
[ψ]− Id

)(
ρμ

(
h̃
))
.

The first equality is given by the induction hypothesis. The others are given by
Lemmas 3.2 and 3.1. Since L(ψ) �= 0 we have from Lemma 1.2 that 1 �∈ spec[ψ] .

Consequently, we deduce ρμ
(
h̃
)
= (0 , 0) for any h ∈ Hj+1. We obtain H̃ ⊂

G̃μ
I . �

Remark 3.5. Proposition 3.4 admits an analogue for the case of a surface S of genus
g ≥ 2. Let G be a nilpotent subgroup of Homeo(S). Any element φ ∈ G induces
an element in Sp(2g,Z) that represents its action on the first homology group. The
group G0 admits a canonical lift, the so-called identity lift. The existence of such
lift implies that all the homological rotation vectors of elements of G0 with respect
to measures in P(G) are equal to 0 if

⋂
φ∈G Ker([φ] − Id) = {0}. The proof is

analogous to the proof of Proposition 3.4.

The existence of a lift for a subgroup does not depend on the specific choice of
an invariant measure. This property is made explicit in the next proposition.
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Proposition 3.6. Let G be a nilpotent subgroup of Homeo(T2). Suppose there

exists ψ ∈ G with L(ψ) �= 0 . Then we obtain G̃I = G̃μ
I and GI = Gμ

I for any
μ ∈ P(G). Moreover GI is a finite index normal subgroup of G0 .

Let us remind the reader that GI is a normal subgroup of G. This has been
proved in Lemma 3.3.

Proof. Let μ , ν ∈ P(G) and let ψ ∈ G with L(ψ) �= 0 . From Lemma 3.3 we have

ψ̃ G̃ν
I ψ̃−1 = G̃ν

I . Moreover, we know that Gν
I ⊂ G0 is a normal subgroup of G.

Then we obtain G̃ν
I ⊂ G̃μ

I by Proposition 3.4. Consequently, we deduce G̃I = G̃μ
I

and GI = Gμ
I for any μ ∈ P(G).

Now we will show that Gμ
I is a finite index normal subgroup of G0 . For this

let us denote Hj = Z(j)(G)∩G0 . We prove by induction on j that Hj ∩Gμ
I is a

finite index normal subgroup of Hj for any j ≥ 0 .
The result is clear for j = 0. Suppose it holds true for some j ≥ 0 . In this case

there exists k ∈ Z+ such that gk ∈ Hj ∩Gμ
I for any g ∈ Hj . On the other hand,

the μ-rotation vector associated to a lift of a homeomorphism in Hj ∩ Gμ
I is an

element of Z2 by construction. In particular, we have that kρμ(g̃) ∈ Z2 for any
lift g̃ of g ∈ Hj .

Let us consider h ∈ Hj+1. We know that ψ ◦ h ◦ψ−1 ◦ h−1 is contained in Hj .
Now fix lifts ψ̃ and h̃ of ψ and h respectively. Then we have kρμ(ψ̃ ◦ h̃ ◦ ψ̃−1 ◦
h̃−1) ∈ Z2. Moreover, it follows from Lemmas 3.2 and 3.1 that

kρμ(ψ̃ ◦ h̃ ◦ ψ̃−1 ◦ h̃−1) = k
(
ρμ

(
ψ̃ ◦ h̃ ◦ ψ̃−1

)
− ρμ

(
h̃
))

= k
(
[ψ]− Id

)(
ρμ

(
h̃
))

∈ Z2.

Since L(ψ) �= 0 it follows from Lemma 1.2 that 1 �∈ spec[ψ] . Then, we have

that all the entries of the matrix k′
(
[ψ] − Id

)−1
are integer numbers where k′ =

det([ψ]− Id). Consequently we conclude that

kk′ρμ
(
h̃
)
∈ Z2 for any lift h̃ of h ∈ Hj+1.

This property guarantees us that the group morphism

h ∈ Hj+1 −→ kk′ρμ
(
h̃
)
∈ Z2/(kk′)Z2

is well defined on Hj+1. Furthermore, its kernel is the set{
h ∈ Hj+1 ; ρμ

(
h̃
)
∈ Z2

}
= Hj+1 ∩Gμ

I ,

and we conclude that Hj+1/(Hj+1∩Gμ
I) is isomorphic to a subgroup of Z2/(kk′)Z2.

Therefore Hj+1 ∩ Gμ
I has index at most (kk′)2 in Hj+1 and the proof is com-

plete. �

Example. We define

Ĥ = {T(a,b) ; a , b ∈ Z/2n} and Ĝ = 〈Ĥ,−Id〉 where n ∈ Z+.

We consider the subgroups H and G of diffeomorphisms of T2 whose lifts belong

to Ĥ and Ĝ respectively. They are nilpotent subgroups of Diffω(T2). This is an
example where GI is strictly contained in G0. Indeed G is a finite group such
that G0 = H and GI = {Id} since ρμ(T(a,b)) = (a , b) for any T(a,b)-invariant
Borel probability measure μ.

The next theorem implies Theorem 1.1. In its proof we use the following two
lemmas. The proof of the first one was suggested to us by the referee.
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Lemma 3.7. Let ψ̃ ∈ Homeo(R2) be a lift of ψ ∈ Homeo(T2) such that 1 /∈
spec[ψ] . Then Fix(ψ̃) is a compact set.

Proof. Since A := [ψ] is homotopic to ψ, any choice of lifts Ã and ψ̃ are a

uniform finite distance apart; i.e. there exists K such that ‖Ã(x)− ψ̃(x)‖ < K for
all x ∈ R2 where ‖·‖ is the usual norm in R2. Also, since 1 /∈ spec(A) there exists

C > 0 such that ‖Ax−x‖ ≥ C‖x‖ for all x. It follows that ‖ψ̃(x)−x‖ ≥ C‖x‖−K

for all x and hence ‖ψ̃(x)−x‖ > 0 for all x with ‖x‖ sufficiently large. Therefore

Fix(ψ̃) lies in a bounded subset of R2. �
Lemma 3.8. Let G be a nilpotent subgroup of GL(2 ,Z) such that there exists
A ∈ G with 1 �∈ spec(A). Then there exists B ∈ G such that 1 /∈ spec(B),
det(B) = 1 and 〈B〉 is a finite index normal subgroup of G.
Proof. We have that the group G has the form : {Nn}n∈Z

, {±Nn}n∈Z
for some

N ∈ GL(2 ,Z) or it is conjugated to H by Lemma 2.3. In the first case we have
1 �∈ spec(N). We claim 1 �∈ spec(N2) if N is orientation-reversing. Otherwise
1 ∈ spec(N2) implies spec(N2) = {1} since det(N2) = 1. We deduce spec(N) =
{−1, 1} as a consequence of det(N) = −1. It contradicts 1 �∈ spec(N). Thus we can
choose B = N if N is orientation-preserving and B = N2 if N is orientation-
reversing. Analogously in the case G = {±Nn}n∈Z

we choose B ∈ {N2,−N2}
since det(N2) = 1 implies that 1 ∈ spec(N2) and 1 ∈ spec(−N2) cannot hold
simultaneously. We choose B = −Id in the case where G is conjugated to H. �
Theorem 3.9. Let G be a nilpotent subgroup of Diff1(T2) . Suppose there exists
ψ ∈ G such that L(ψ) �= 0 . Then Fix(GI , ψ) �= ∅ and the orbit of p ∈ Fix(GI , ψ)
by G is finite and it is contained in Fix(GI).

Proof. Let [ ] : G → MCG(T2) be the morphism of groups associating to each
element of G its isotopy class in the mapping class group of the torus. Since
ker([ ]) = G0 we obtain that G/G0 is isomorphic to the nilpotent subgroup [G]
of MCG(T2). Following Lemmas 3.8 and 1.2 there exists an orientation-preserving
ψ ∈ G such that L(ψ) �= 0 and 〈[ψ]〉 is a finite index subgroup of [G]. In particular
[ ]−1〈[ψ]〉 is a finite index normal subgroup of G/G0, and hence 〈G0, ψ〉 is a finite
index normal subgroup of G.

Since L(ψ) �= 0 , let us choose a lift ψ̃ ∈ Diff1
+(R

2) of ψ such that Fix(ψ̃) �= ∅ .
From Lemma 3.7 we conclude that Fix(ψ̃) is a non-empty compact subset of R2.

Now, we denote J = 〈GI , ψ〉 and J̃ = 〈G̃I , ψ̃〉 ⊂ Diff1
+(R

2). Since GI is a
finite index subgroup of G0 by Proposition 3.6 and G0 is a normal subgroup of G
it follows that J is a finite index subgroup of 〈G0, ψ〉. Moreover, since 〈G0, ψ〉 is
a finite index subgroup of G we conclude that J is a finite index subgroup of G.

The group G̃I is normal in 〈G̃I , ψ̃〉 since it is normal in Ĝ as proved in Lemma

3.3. Then the derived group 〈G̃I , ψ̃〉′ of 〈G̃I , ψ̃〉 is contained in G̃I , and hence the

natural projection given by κ : 〈G̃I , ψ̃〉′ → 〈GI , ψ〉′ is an isomorphism. We deduce

that J̃ is a nilpotent subgroup of Diff1
+(R

2). Moreover, we know that Fix
(
ψ̃
)
is

a non-empty compact set. Thus Theorem 2.4 guarantees that Fix
(
J̃
)
�= ∅, and we

conclude that 〈GI , ψ〉 has a global fixed point.
On the other hand, the group 〈GI , ψ〉 is a finite index subgroup of G. Let

g1 , . . . , gk ∈ G such that

G = 〈GI , ψ〉 ∪ g1〈GI , ψ〉 ∪ . . . ∪ gk〈GI , ψ〉



NILPOTENT ACTIONS ON THE TORUS 203

and let p ∈ Fix(〈GI , ψ〉) . The orbit O of p by G is given by

O =
{
p , g1(p), . . . , gk(p)

}
where φ

(
gi(p)

)
= gi ◦ g−1

i ◦ φ ◦ gi(p) = gi(p) for every φ ∈ GI since GI is normal
in G. Consequently, O is contained in Fix(GI). �

4. Replacing T2
with the compact annulus, the Klein bottle

or the Möbius strip

In this last section we remark that Theorem 1.1 is also true for the circle S1, the
compact annulus S1× [0 , 1] , the Klein bottle and the compact Möbius strip.

For this, let us remind the reader that a homeomorphism of S1 has non-zero
Lefschetz number if and only if it is orientation-reversing.

Proposition 4.1. Theorem 1.1 stays true for nilpotent groups of homeomorphisms
when we replace T2 with S1.

If the elements of the nilpotent group G are S1-diffeomorphisms, then Theorem
1.1 implies the above proposition. It suffices to pass from the nilpotent group G
to the nilpotent group G×G where the element (g1 , g2) ∈ G×G is given by

(g1 , g2)(x , y) =
(
g1(x) , g2(y)

)
∈ S1 × S1 = T2

for all x , y ∈ S1. There exists an orientation-reversing g ∈ G by hypothesis. We
can apply Theorem 1.1 since [g, g] = −Id. Indeed the Lefschetz number of (g, g) is
non-zero by Lemma 1.2.

When the elements of G are S1-homeomorphisms we have the following proof.

Proof of Proposition 4.1. Let ψ be an orientation-reversing homeomorphism of a
subgroup G of Homeo(S1). The fixed point set of Fix(ψ) contains exactly two
points. Analogously to Lemma 3.3 the group GI of elements with 0 ∈ R/Z
rotation number is a normal subgroup of the group G0 of orientation-preserving
elements of G. We can proceed as in Proposition 3.6 to show that GI is a finite
index subgroup of G0. More precisely the rotation numbers associated to elements
of Hj := Z(j)(G) ∩ G0 are contained in (Z/2j)/Z and Hj ∩ GI = {φ ∈ Hj :
Fix(ψ) ⊂ Fix(φ)} for any j ≥ 0. It is obvious for j = 0. Suppose it holds for
some j ≥ 0. Given φ ∈ Hj+1 the element η := φ ◦ ψ ◦ φ−1 ◦ ψ−1 belongs to Hj

and has rotation number 2ρ(φ) where ρ(φ) is the rotation number of φ. Thus
ρ(φ) belongs to (Z/2j+1)/Z. Moreover if φ ∈ GI , then η belongs to Hj ∩ GI .
Since φ ◦ ψ ◦ φ−1 = η ◦ ψ , we deduce that φ(Fix(ψ)) = Fix(η ◦ ψ). The induction
hypothesis implies that Fix(ψ) ⊂ Fix(η◦ψ). Since both ψ and η◦ψ are orientation-
reversing, their fixed point sets contain exactly two points. As a consequence we
obtain Fix(η ◦ψ) = Fix(ψ) and then φ(Fix(ψ)) = Fix(ψ) for any φ ∈ Hj+1 ∩GI .
The rotation number of φ is 0, and thus any periodic orbit of φ consists of fixed
points. Hence Fix(ψ) ⊂ Fix(φ) for any φ ∈ Hj+1 ∩GI .

By applying the previous result for the nilpotency class j of G we obtain that
G0/GI is isomorphic to a subgroup of the finite group (Z/2j)/Z. In particular GI
is a finite index normal subgroup of G0. Moreover we get Fix(〈GI , ψ〉) = Fix(ψ).

Since G0 is a finite index subgroup of G, we have that 〈GI , ψ〉 is a finite index
subgroup of G. Hence there exists a finite orbit of G whose intersection with
Fix(ψ) is non-empty. �
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Before proving Theorem 1.1 for the compact annulus let us remark that a home-
omorphism of S1× [0 , 1] has Lefschetz number different from zero if and only if it
changes the orientation of the generator of the first singular homology group of the
annulus.

Theorem 4.2. Let N be a nilpotent subgroup of Diff1(S1× [0 , 1]) . If N has
some element with non-zero Lefschetz number, then N has a finite orbit. More
precisely :

(i) N has finite orbits in the annulus boundary when there exists an element
of N with non-zero Lefschetz number that leaves invariant each of the
connected components of the annulus boundary ;

(ii) N has finite orbits in the interior of the annulus if no connected component
of the annulus boundary is N -invariant.

Proof. Consider the subgroup N ′ of N whose elements leave invariant each one of
the connected components of the boundary ∂A of the annulus A := S1× [0 , 1]. Let
us consider the proposed two cases.

Case (i). The group N ′ has finite orbits in both connected components of ∂A by
Proposition 4.1. Since N ′ is a subgroup of N of index at most 2, it follows that N
has finite orbits contained in ∂A. The result holds true even when the group N is
contained in Homeo(S1× [0 , 1]).

Case (ii). To detect a finite orbit in the interior of the annulus we consider the
double T2 of the annulus and the double of each element of N . With this construc-
tion we obtain a nilpotent subgroup G of Homeo(T2). We claim that there exists
f0 ∈ N \N ′ such that L(f0) �= 0. Otherwise L(f) vanishes for any f ∈ N \N ′ and
there exists f1 ∈ N ′ such that L(f1) �= 0 by hypothesis. We choose any g1 ∈ N \N ′.
We obtain L(f1g1) �= 0 since f1g1 changes the orientation in H1(A,Z). Since f1g1
belongs to N \N ′ the result is proved. The class in the mapping class group of the
double ψ ∈ G of the map f0 is given by the matrix

[ψ] =

[
−1 n
0 −1

]
for some n ∈ Z.

We have L(ψ) = 4 since L(ψ) = det(Id− [ψ]) by [4].
At this point we cannot apply Theorem 1.1 in a straightforward way to obtain

a finite orbit because the elements of G defined in the double of the annulus are
not necessarily of class C1 along the boundary of the annulus in T2.

Nevertheless, following another referee’s suggestion we can overcome this point
using a recent result of K. Parkhe in [15]. He proves (cf. Theorem 5 and Remark
6 in section 2) there exists a homeomorphism of the annulus, supported in a small
neighborhood of its boundary, such that: the conjugate of the elements of G by
this homeomorphism gives a C1-diffeomorphism that can be glued with itself to
obtain a C1- diffeomorphism in the double T2 of the annulus.

Of course the C1- diffeomorphism corresponding to the map ψ stays with non-
zero Lefschetz number in T2. Consequently, since ψ has no fixed point in the
boundary of the annulus it follows from Theorem 3.9 that N has a finite orbit in
the interior of the annulus. �
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Remark 4.3. We also can prove the above result repeating the same arguments
presented in the proof of Theorem 3.9. Let us remark that we use the C1 differ-
entiability in the proof of such theorem just to guarantee a global fixed point for
〈G̃I , ψ̃〉 ⊂ Diff1

+(R
2) via Theorem 2.4. But we can do this in another way.

Let us fix the universal covering map π : R2 → T2 such that the restrictions
of π to the strips R × [0 , 1/2] and R × [1/2 , 1] are the universal covering maps
corresponding to the two copies of the annulus in the double.

The elements of G̃I have a trivial rotation vector with respect to the Borel
probability measures invariant by the group G. Hence, the strips R× [0 , 1/2] and

R× [1/2 , 1] are invariant by all φ̃ ∈ G̃I .
On the other hand we know that, in the double, the map ψ has a fixed point

in the interior of each copy of the annulus since L(ψ) �= 0 and ψ permutes the

connected components of the annulus. Now, consider a lift ψ̃ having a fixed point
in the strip R × [0 , 1/2] . Then, from Lemma 3.7 we know that Fix(ψ̃) is a non-
empty compact set. Moreover we have that the strip R× [0 , 1/2] is also invariant

by ψ̃. Consequently, we can apply Theorem 2.4 to the nilpotent group given by the
restriction of the elements of 〈G̃I , ψ̃〉 to the strip R× (0 , 1/2) obtaining a global

fixed point for the group 〈G̃I , ψ̃〉 . Following the end of the proof of Theorem 3.9
we conclude the existence of a finite orbit for the group G, and consequently, the
group N has a finite orbit in the interior of the annulus.

In what follows let Π : T2 → K2 be the 2-fold orientation covering map of the
Klein bottle K2 by T2 and let us denote by σ the non-trivial lift of the identity

map by Π. Given a subgroup G of Homeo(K2), let us denote by Ĝ ⊂ Homeo(T2)
the subgroup of all lifts of elements of G.

Given an element φ ∈ G its distinct lifts to T2 by Π are φ̃ and σ ◦ φ̃. Hence
we have that the lifts of φ ∈ G by Π commute with the covering transformations
since the lifts φ̃ ◦ σ and σ ◦ φ̃ are different from φ̃ and then equal. This property

implies that if G is a nilpotent group with nilpotent class n ∈ Z+, then Ĝ is also
a nilpotent group, with nilpotent class at most n+ 1.

Moreover, if ψ ∈ Homeo(K2), then the Lefschetz numbers of the lifts of ψ by
Π are 2L(ψ) and 0. Consequently, if G has an element with non-trivial Lefschetz

number, then Ĝ has the same property and we obtain the following corollary of
Theorem 1.1.

Corollary 4.4. Let G be a nilpotent subgroup of Diff1(K2) . If G has some
element whose Lefschetz number is different from zero, then G has a finite orbit.

Repeating for the Möbius strip the arguments presented in this section for the
annulus and for the Klein bottle we conclude the following corollary of Theorem
4.2.

Corollary 4.5. Let N be a nilpotent subgroup of the group of all C1-diffeo-
morphisms of the compact Möbius strip. If N has some element f with L(f) �= 0,
then N has finite orbits in the boundary and in the interior of the Möbius strip.

The C1 hypothesis is not necessary to find finite orbits in the boundary of the
Möbius strip. Such a boundary has one connected component that is homeomor-
phic to a circle. Hence there exist finite orbits in the boundary by Proposition
4.1. Finally let us remind the reader that the non-trivial covering transformation
σ associated to the 2-fold orientation covering of the compact Möbius strip by
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the compact annulus permutes the connected components of the boundary of the
annulus. In that case, one of the lifts ψ̃ , σ ◦ ψ̃ permutes such components. There
exists an interior finite orbit by Theorem 4.2.

Appendix A. Proof of Lemma 2.3

Let G be a nilpotent subgroup of GL(2 ,Z). Consider the natural mapping
τ : GL(2 ,C) → PGL(2 ,C). We denote G+ = τ (G ∩ SL(2 ,Z)) and G = τ (G). It
suffices to show that either G is cyclic or G is conjugated to H.

If G+ is trivial, then G is a group of cardinality at most 2. We suppose from
now on that G+ is non-trivial.

The group G+ is a nilpotent Fuchsian group. Since its center is non-trivial
all elements share the same fixed point set. Hence G+ is a cyclic group 〈α〉 (cf.
[14, Theorems 2.3.2 and 2.3.5] for further details).

Since G is nilpotent, its subset Tor(G) of finite order elements is a normal
subgroup of G [13, Theorem 16.2.7]. Suppose that Tor(G) is non-trivial. We claim
that G is finite. Since every non-trivial normal subgroup of a nilpotent group H
contains a non-trivial element of the center of H, the group Tor(G)∩Z(G) is non-
trivial [13, Theorem 16.2.3]. If Tor(G)∩G+ �= {Id}, then G+ is finite and so is G.
In the remaining case there exists a non-trivial element β ∈ Tor(G) ∩ Z(G) that
necessarily belongs to G \ G+. Consider an element B ∈ G such that τ (B) = β.
The matrix B has finite order; thus its eigenvalues are roots of the unit. The
matrix B does not have a non-real eigenvalue λ since otherwise det(B) = λλ = 1
and this contradicts τ (B) �∈ G+. Hence the eigenvalues of B are necessarily 1 and
−1 and we can diagonalize B up to conjugation by a matrix in GL(2 ,Q). Since
τ (B) ∈ Z(G) we obtain either [C ,B ] = Id or [C ,B ] = −Id for any C ∈ G. We
denote G1 =

{
C ∈ G ; [C ,B ] = Id

}
; it is a normal subgroup of G of index at

most 2. The eigenvalue associated to an eigenvector in Q2 \ {(0 , 0)} of a matrix
E in GL(2 ,Z) is always 1 or −1. We deduce that C is diagonal in the base
diagonalizing B with entries in {1 ,−1} for any C ∈ G1. Hence the cardinality of
G1 is less than or equal to 4 and G is finite.

Since G+ is a normal subgroup of G, there exists a non-trivial element γ ∈
G+ ∩ Z(G). Suppose γ is parabolic (i.e. #(Fix(γ)) = 1). The restriction of γ
to the circle R ∪ {∞} has exactly a fixed point and all the remaining orbits are
infinite. Let us show that γ does not commute with any orientation-reversing
homeomorphism η of the circle R ∪ {∞} by contradiction. Indeed γ ◦ η =
η◦γ implies that γ(Fix(η)) = Fix(η). Moreover Fix(η) contains exactly two points
if η|R∪{∞} is orientation-reversing. We deduce that the two points of Fix(η) have
finite orbits for γ , obtaining a contradiction since there is just one point whose
orbit by γ is finite. Therefore the groups G+ and G coincide and then G is
cyclic.

Suppose that γ is hyperbolic, has 2 fixed points in R ∪ {∞} and no other
finite orbit. We already know that Fix(γ) = Fix(η) for any η ∈ G+ \ {Id}.
Given η ∈ G \ G+ the properties γ(Fix(η)) = Fix(η) and �(Fix(η)) = 2 imply
Fix(η) ⊂ Fix(γ) and then Fix(η) = Fix(γ). We obtain Fix(γ) = Fix(η) for any
η ∈ G \ {Id}. Fixing p0 ∈ Fix(γ) , we define ζ : G → R∗ and |ζ| : G → R+ as
ζ(η) = η′(p0) and |ζ|(η) = |η′(p0)| respectively. The map ζ is injective since a
Möbius transformation that has two different fixed points (the elements of Fix(γ))
and whose multiplicator at one of them is equal to 1 is the identity map. Since



NILPOTENT ACTIONS ON THE TORUS 207

ζ(G+) is a cyclic subgroup of R+ we conclude that |ζ|(G) is a discrete closed
subgroup of R+. In particular |ζ|(G) is cyclic. Then there exists η0 ∈ G such
that |η′0(p0)| generates |ζ|(G). We claim G = 〈η0〉 and in particular that G is
cyclic. Otherwise there exists an element η1 ∈ G such that ζ(η1) = −1. Then η1
is an element of order 2 of G since ζ is injective. Since η1 ∈ Tor(G) \ {Id}, G is
finite. This contradicts that γ is hyperbolic.

The unique remaining case corresponds to the situation where γ is of finite
order. The group G is a finite nilpotent group of Möbius transformations. The
finite groups of orientation-preserving homeomorphisms of the Riemann sphere are
isomorphic to a cyclic group Cn , a dihedral group Dn , A4 , S4 or A5 [20, Theorem
2.6.1]. The groups A4 , S4 or A5 are not nilpotent. Moreover Dn is nilpotent
if and only if n is a power of 2. Thus if G is not cyclic, then it is a dihedral
group D2m with 2m+1 elements for some m ∈ N. It is easy to see that the
periodic elements of τ (GL(2 ,Z)) have order 1 , 2 or 3. Since D2m contains a
cyclic group with 2m elements we deduce that G is the group D2. Let A be a
matrix such that τ (A) = α. Since α belongs to G+ and has order 2 , we deduce
that A �∈ {Id ,−Id} , A2 ∈ {Id ,−Id} and det(A) = 1. These properties imply
that A2 = −Id and spec(A) = {i ,−i}. The kernel of τ|G is equal to {Id ,−Id};
in particular G has 8 elements. Consider a matrix B ∈ G such that τ (B) �∈ G+.
Analogously as in the fourth paragraph the matrix B satisfies spec(B) = {1 ,−1}
and it is diagonalizable by a change of coordinates in GL(2 ,Q). Moreover A does
not commute with B since otherwise spec(A) ⊂ R. Since [A ,B ] = −Id we
obtain

A =

(
0 a

−a−1 0

)
and B =

(
1 0
0 −1

)
for some a ∈ Q.

Up to a further change of coordinates we can suppose that a = 1. This implies
that G = H. Since A has order 4, B has order 2 and BAB−1 = A−1, the group
H is isomorphic to D4.
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