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Abstract. In this short note, using Günther’s volume comparison theorem
and Yokota’s gap theorem on complete shrinking gradient Ricci solitons, we
prove that for any complete shrinking gradient Ricci soliton (Mn, g, f) with
sectional curvature K(g) < A and Volf (M) ≥ v for some uniform constant
A, v, there exists a small uniform constant εn,A,v > 0 depends only on n,A
and v, if the scalar curvature R ≤ εn,A,v, then (M,g, f) is isometric to the

Gaussian soliton (Rn, gE ,
|x|2
4

).

Introduction

Gradient Ricci solitons play an important role in Hamilton’s Ricci flow as they
correspond to self-similar solutions, and often arise as singularity models of the
Ricci flow. The study of Ricci solitons has also become increasingly important in
the study of metric measure theory.

A complete Riemannian manifold (M, g) is called a gradient Ricci soliton if there
exists a smooth function f on M such that

Ric +∇∇f = λg

for some constant λ. It is denoted by (M, g, f). For λ < 0 the Ricci soliton is
expanding, for λ = 0 it is steady and for λ > 0 is shrinking. The function f is
called a potential function of the gradient Ricci soliton. After rescaling the metric
g we may assume that λ ∈ {− 1

2 , 0,
1
2}. In this short note, we only consider the

shrinking case. If M = R
n, g = gE (Euclidean metric), f = |x|2

4 , and (M, g, f) is a
shrinking Ricci soliton, it is called a Gaussian soliton.

In this note, R denotes the scalar curvature of (M, g, f), and we always normalize
the potential function f by adding a constant so that

(0.1) R + |∇f |2 = f.

With this normalization of f , the normalized f -volume Volf (M), which is called
the Gaussian density in [6], is defined by

(0.2) Volf (M) = (4π)−
n
2

∫
M

e−fdVg,
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and Perelman’s invariant μ0 is defined by [1, 16]:

(0.3) μ0 = − log Volf (M).

For complete shrinking gradient Ricci soliton (M, g, f), if 0 ≤ Ric(g) < 1
2g,

Naber [15] proved that (M, g, f) is isometric to the Gaussian soliton. Naber used
the equation of the scalar curvature

(0.4) ΔfR = R− 2|Ric|2 = λi(1− 2λi) ≥ 0,

where ΔfR = ΔR − 〈∇f,∇R〉, λi are the eigenvalues of Ricci tensor. Then the
scalar curvature must be constant (this result also can be obtained from the main
result in the author and Ge’s paper [10]), implies that the scalar curvature and the
Ricci curvature must be zero, hence (M, g, f) is the Gaussian soliton.

Without the assumption of nonnegative Ricci curvature, Munteanu and Wang
[14] proved that if |Ric| ≤ 1

100n , then (M, g, f) is isometric to the Gaussian soliton. If
the Ricci curvature is bounded, they first proved that the Riemann curvature tensor
grows at most polynomially in the distance function, then using the equations for
the scalar curvature, Ricci tensor and Riemann curvature tensor on the complete
shrinking gradient Ricci solitons, they proved that for any p ≥ 3,

(0.5)

∫
M

(f − n

2
+ p(1− 50pK))|Rm|pe−fdVg ≤ 0,

where K = supx∈M |Ric|. Then they take p = n and K = 1
100n , to get Rm = 0,

hence (M, g, f) is isometric to the Gaussian soliton.
In this short note, using Günther’s volume comparison theorem and Yotoka’s gap

theorem on the complete shrinking gradient Ricci solitons, we prove the following
gap theorem.

Theorem 0.1. Let A, v be positive numbers. Let (Mn, g, f) be a complete shrinking
gradient Ricci soliton with sectional curvature K(g) < A and Volf (M) ≥ v. There
exists a constant εn,A,v > 0 depends only on n,A and v and the following: If

R(g) ≤ εn,A,v, then (M, g, f) is isometric to the Gaussian soliton (Rn, gE ,
|x|2
4 ).

We recall Yokota’s gap theorem as follows.

Theorem 0.2 (Yokota, [19, 20]). There exists a constant ε′n > 0 which depends
only on n ≥ 2 and satisfies the following: Any complete shrinking gradient Ricci
soliton (Mn, g, f) with

Volf (M) ≥ 1− ε′n

is, up to scaling, the Gaussian soliton (Rn, gE ,
|x|2
4 ).

In [19], using Perelman’s reduced volume, Yokota proved a gap theorem for
ancient solutions to the Ricci flow with Ricci curvature bounded below. As a
corollary, he obtained the above gap theorem under the additional assumption that
the Ricci curvature is bounded below. Later, in [20], he removed the assumption
that the Ricci curvature is bounded below. As an application of the above theorem,
Yokota gave a complete affirmative answer to the conjecture of Carrillo-Ni [1]. A
complete shrinking gradient Ricci soliton (M, g, f) is the Gaussian soliton if and
only if Volf (M) = 1.

Now we recall Günther’s volume comparison theorem. Let MH be the simply
connected space form of constant sectional curvature H. Let VH(r) denote the
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volume of a ball in MH with radius r. The Günther’s volume comparison theorem
is the following.

Theorem 0.3 (Günther, [11]). Let (M, g) be a Riemannian manifold, p ∈ M , and
i(p) denote the injectivity radius at the point p. If the sectional curvature K(g) ≤ H,
then

(0.6) Vol(Bp(r)) ≥ VH(r)

for any r < min{i(p), π
H1/2 }.

Note that for H > 0

VH(r) = nωn

∫ r

0

(
sin(H1/2s)

H1/2
)n−1ds.

Here ωn is the volume of unit ball B(1) in R
n with Euclidean metric gE .

Under the assumption of Volf (M) ≥ v, we use Carrillo-Ni’s logarithmic Sobolev
inequality to get the lower bound of Vol(Bp(1)), then get the uniform lower bound of
the injectivity radius from Cheeger-Gromov-Taylor’s theorem (Theorem 2.3 below),
and use Günther’s volume comparison theorem. We get a better lower bound of
Vol(Bp(r0)) with small r0. Thus we get a lower bound of the normalized f -volume
with small scalar curvature. Then the Theorem 0.1 follows from Yokota’s gap
theorem (Theorem 0.2).

In section 1, under the assumption that the scalar curvature R ≤ δ < n
2 , we give

the lower bound of the volume ofD(r), the set of x ∈ M such that 2
√
f(x)− f(p) ≤

r. In section 2, we obtain the uniform lower bound of the injectivity radius. In
section 3, we give the proof of Theorem 0.1.

1. Lower bound of the volume of D(r)

In this section, recall some properties of the complete shrinking gradient Ricci
solitons and give an estimate about the lower bound of the volume of D(r) with
scalar curvature R ≤ δ < n

2 .

Lemma 1.1.

(1) R+Δf = n
2 ;

(2) R+ |∇f |2 = f , after normalizing the function f by a constant;
(3) for any fixed point p ∈ Mn, there exist two positive constants c1 and c2 so

that, for any x ∈ Mn, we have

(1.1)
1

4
(d(x)− c1)

2 ≤ f(x) ≤ 1

4
(d(x) + c2)

2,

where d(x) is the distance function from x to p.

(3) in the above lemma is proved by Cao-Zhou [2] (see also Fang-Man-Zhang [9]
and for an improvement, Haslhofer-Müller [12]). It is well known that a complete
shrinking gradient Ricci soliton has nonnegative scalar curvature (see Chen [4]) and
either R > 0 or the metric g is flat (see Pigola-Rimoldi-Setti [17] or the author [21]).
Recently, Chow-Lu-Yang [7] proved that the scalar curvature of a complete non-
compact nonflat shrinker has a lower bound by Cd−2(x) for some positive constant
C. From (3) in the above lemma, we know there exists a point p ∈ M such that
∇f(p) = 0. We will fix this point in this note.
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We denote cp = f(p) = R(p) ≥ 0, ρ = 2
√
f − cp, and D(r) = {ρ ≤ r}. Define

V (r) =
∫
D(r)

dvg, and χ(r) =
∫
D(r)

Rdvg; then V ′(r) =
∫
∂D(r)

1
|∇ρ| =

r
2

∫
∂D(r)

1
|∇f |

and χ′(r) =
∫
∂D(r)

R
|∇ρ| =

r
2

∫
∂D(r)

R
|∇f | .

Lemma 1.2.

(1.2) 0 ≤ nV (r)− 2χ(r) =
r2 + 4cp

r
V ′(r)− 4

r
χ′(r).

Proof. Since

Δf +R =
n

2
,

we have

nV (r)− 2

∫
D(r)

Rdvg = 2

∫
D(r)

Δfdvg

= 2

∫
∂D(r)

|∇f |

= 2

∫
∂D(r)

f −R

|∇f |

=
r2 + 4cp

r
V ′(r)− 2

∫
∂D(r)

R

|∇f |

=
r2 + 4cp

r
V ′(r)− 4

r
χ′(r).

�
Then we can estimate the volume growth from below under R ≤ δ < n

2 for some
positive δ.

Lemma 1.3. Let (M, g, f) be a complete shrinking gradient Ricci soliton with scalar
curvature R ≤ δ < n

2 for some positive δ. Then for any r0 > 0 and for any r > r0,
we have

(1.3) V (r) ≥ V (r0)

(r20 + 4cp)
n
2 −δ

(r2 + 4cp)
n
2 −δ,

and

(1.4) V ′(r) ≥ (n− 2δ)
V (r0)

(r20 + 4cp)n/2−δ
r(r2 + 4cp)

n
2 −1−δ.

Proof.

d

dr
(log

V (r)

(r2 + 4cp)
n
2 −δ

) =
V ′(r)

V (r)
− (

n

2
− δ)

2r

r2 + 4cp

=
(r2 + 4cp)V

′(r)− (n− 2δ)rV (r)

(r2 + 4cp)V (r)

=
2r(δV (r)− χ(r)) + 4χ′(r)

(r2 + 4cp)V (r)

where we have used Lemma 1.2 in the last equality. Since R ≤ δ and χ(r) is
nondecreasing with r, we obtain that

(1.5)
d

dr
(log

V (r)

(r2 + 4cp)
n
2 −δ

) ≥ 0.
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Then we get (1.3). Since χ(r) ≤ δV (r) and χ′(r) ≥ 0, then (1.4) follows from
Lemma 1.2 and (1.3). �

Remark 1.4. Chen Chih-Wei [5] also obtained the lower bound of the geodesic ball
with 1

Vol(Br)

∫
Br

Rdvg ≤ δ < n
2 . Cao-Zhou [2] proved that the upper bound Vol(Br)

≤ Crn for any complete shrinking gradient Ricci soliton, and Chow-Lu-Yang [8]
concluded a criterion for a shrinking gradient Ricci soliton to have positive asymp-
totic volume ratio.

2. Lower bound of the injectivity radius

In this section, we prove the lower bound of the injectivity radius. We recall the
logarithmic Sobolev inequality for shrinking Ricci solitons established by Carrillo-Ni
[1]:
(2.1)∫
M

u2 log u2dv−(

∫
M

u2dv) log(

∫
M

u2dv) ≤ μ0

∫
M

u2dv+

∫
M

Ru2dv+4

∫
M

|∇u|2dv

for any u ∈ C∞
0 (M), where μ0 is a Perelman’s invariant.

Using this logarithmic Sobolev inequality, following Perelman’s proof of his no
local collapsing theorem (see [13, 16, 18]), we can obtain the following no local
collapsing theorem for shrinking Ricci solitons; see [1].

Theorem 2.1. Let (M, g, f) be a complete shrinking gradient Ricci soliton; then
there exists a constant κ = κ(μ0, n) depending only on μ0 and n satisfying the
following property. If x0 ∈ M is a point and r0 > 0 are such that R ≤ r−2

0 in
Bx0

(r0), then

(2.2) VolBx0
(r0) ≥ κrn0 .

Here we just need a special case of no local collapsing theorem under the as-
sumptions in Theorem 0.1. We state it as the following lemma.

Lemma 2.2. Let (M, g, f) be a complete shrinking gradient Ricci soliton with
Volf (M) ≥ v > 0, K(g) ≤ A and R ≤ 1. Then there exists a uniform constant
C(A, n) > 0 depending only on A and n such that for any point p ∈ M

(2.3) Vol(Bp(1)) ≥ C(A, n)v.

Proof. For short we denote B(r) for Bp(r) and V (r) for Vol(Bp(r)) in the proof of
this lemma.

Let φ : [0,∞) → [0, 1] be a cutoff function with φ = 1 as x ∈ [0, 1/2], φ = 0 as
x ∈ [1,∞) and |φ′| ≤ 3. Set

ω2
1(x) = (4π)−

n
2 φ2(r(x))e−C

where C is chosen so that
∫
M

ω2
1dv = 1. We have the estimate of C,

(2.4) −n

2
log 4π + log V (

1

2
) ≤ C ≤ −n

2
log 4π + log V (1).
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Now we estimate

4

∫
M

|∇w1|2dv = 4(4π)−n/2e−C

∫
M

|φ′|2dv

≤ 36(4π)−n/2e−CV (1)

≤ 36
V (1)

V ( 12 )
.

(2.5)

Since w2
1 = (4π)−

n
2 e−Cφ2,∫

M

w2
1 logw

2
1dv = −C − n

2
log(4π) + (4π)−

n
2 e−C

∫
M

φ2 log φ2dv.

Since x log x ≥ − 1
e for any x > 0 and φ2 log φ2 = 0 outside the ball B(1),∫

M

φ2 log φ2dv ≥ −1

e
V (1).

Then using the estimate of C, we get

(2.6)

∫
M

w2
1 logw

2
1dv ≥ − log V (1)− 1

e

V (1)

V (1/2)
.

Since R ≤ 1, we take u = w1 in the logarithmic Sobolev inequality (2.1), and
combining the above estimates, we get

− log V (1)− 1

e

V (1)

V (1/2)
≤ μ0 + 1 + 36

V (1)

V (1/2)
.

Hence we have

log V (1) ≥ −μ0 − 1− 37
V (1)

V (1/2)
.

Since K(g) ≤ A and R ≥ 0, there exists a uniform constant C1 = C1(A, n) > 0 de-
pending only on A and n such that K(g) ≥ −C1. Then using the Bishop-Gromov’s
volume comparison theorem, there exists a uniform constant C2 = C2(A, n) > 0
depending only on A and n such that

V (1)

V (1/2)
≤ C2.

Hence there exists a uniform constant C(A, n) > 0 depending only on A and n,
such that

(2.7) V (1) ≥ C(A, n)Volf (M) ≥ C(A, n)v.

�

Cheeger-Gromov-Taylor obtained a lower bound estimate of the injectivity radius
as follows; see Theorem 4.7 (i) in [3].

Theorem 2.3 (Cheeger-Gromov-Taylor). Let (Mn, g) be a complete manifold with
H ≤ K(g) ≤ K,K > 0. Let r = r(x) be the distance function from x to p, and fix
r1, r0, s, with s ≤ r1, r0 + 2s < π√

K
, r0 ≤ π

4
√
K
. Then

(2.8) i(x) ≥ r0
2

1

1 + (VH(r0 + s)/Vol(Bp(r1)))(VH(r + r1)/VH(s))
.
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Let i(x) denote the injectivity radius at point x, let i(M) denote the injectivity
of M , i.e., i(M) = infx∈M i(x). Using Theorem 2.3, we can obtain the uniform
lower bound of the injectivity radius.

Lemma 2.4. Let (M, g, f) be a complete shrinking gradient Ricci soliton with the
same assumptions in Theorem 0.1. Then there exists a uniform constant C =
C(A, v, n) > 0 depending only on A, v and n such that

(2.9) i(M) ≥ C.

Proof. Given any point p ∈ M . Under the assumptions in Theorem 0.1, we get a
lower bound H of K(g) depending only on A, n. We take r1 = r0 = s = π

4
√
A

and

x = p in Theorem 2.3. We obtain

i(p) ≥ r0
2

1

1 + VH(2r0)/Vol(Bp(r0))
.

If r0 ≥ 1, then Vol(Bp(r0)) ≥ Vol(Bp(1)) ≥ C(A, n)v. If r0 < 1, by the Bishop-
Gromov volume comparison theorem,

Vol(Bp(r0)) ≥
VH(r0)

VH(1)
Vol(Bp(1)) ≥ C̃(A, n)v.

Hence there exists a uniform constant C = C(A, n, v) > 0 depending only on A, v,
and n, such that

i(p) ≥ C.

Hence

i(M) ≥ C.

�

3. Proof of Theorem 0.1

In this section, we first use Günther’s volume comparison theorem to give a lower
bound estimate of V (r0) for small r0 with small scalar curvature. Then by Lemma
1.3, we get the estimate Volf (M) is close to 1, hence Theorem 0.1 follows from
Theorem 0.2.

Proof of Theorem 0.1. We assume the scalar curvature R ≤ ε for some 0 < ε ≤ 1.
By Lemma 2.4 and Günther’s volume comparison theorem, for any r < C0 =
min{C, π√

A
}, here C is the constant in Lemma 2.4. We have

(3.1) Vol(Bp(r)) ≥ nωn

∫ r

0

(
sin(A1/2s)

A1/2
)n−1ds.

From R+ |∇f |2 = f and R ≥ 0, we have |∇2
√
f | ≤ 1; hence

ρ(x) ≤ 2
√
f(x) ≤ r(x) + 2

√
f(p) ≤ r(x) + 2

√
ε.

Thus for any r0 ≥ 2
√
ε we have

Bp(r0 − 2
√
ε) ⊆ D(r0).

If r0 − 2
√
ε < C0, by Günther’s volume comparison theorem

(3.2) V (r0) ≥ Vol(Bp(r0 − 2
√
ε) ≥ nωn

∫ r0−2
√
ε

0

(
sin(A1/2s)

A1/2
)n−1ds.
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Now we choose ε = εn(A, v) > 0 such that ε1/4 < C0 and take r0 = ε1/4 + 2ε1/2.
Then we have

(3.3) V (ε1/4 + 2ε1/2) ≥ nωn

∫ ε1/4

0

(
sin(A1/2s)

A1/2
)n−1ds.

Hence

V (r0)

(r20 + 4cp)n/2−ε
≥ V (ε1/4 + 2ε1/2)

((ε1/4 + 2ε1/2)2 + 4ε)n/2−ε

≥ nωn

∫ ε1/4

0
( sin(A

1/2s)
A1/2 )n−1ds

εn/4(1 + 4ε1/4 + 8ε1/2)n/2−εε−ε/2
.

(3.4)

We denote

α(ε) := (1 + 4ε1/4 + 8ε1/2)−n/2+εεε/2

and

C(A, ε) := nωn

∫ ε1/4

0

(
sin(A1/2s)

A1/2
)n−1ds/εn/4.

Note that

(3.5) lim
ε→0

α(ε) = 1,

and

(3.6) lim
ε→0

C(A, ε) = ωn.

By Lemma 1.3, for any r ≥ ε1/4 + 2ε1/2, we have

(3.7) V ′(r) ≥ (n− 2ε)α(ε)C(A, ε)rn−1−2nε.

Denote Vf (r) := (4π)−n/2
∫
D(r)

e−fdvg. Then

Vf (r) = e−cp(4π)−n/2

∫
D(r)

e−
ρ2

4 dvg

and

(3.8) V ′
f (r) = e−cp− r2

4 (4π)−n/2

∫
ρ(x)=r

1

|∇ρ| = e−cp− r2

4 (4π)−n/2V ′(r).

Hence for any r > r0 = ε1/4 + 2ε1/2, by (3.7) and (3.8), we have

Vf (r) = Vf (r0) +

∫ r

r0

V ′
f (s)ds

≥ e−cp(4π)−n/2(n− 2ε)α(ε)C(A, ε)

∫ r

r0

sn−1−2nεe−s2/4ds.

Hence

(3.9) Volf (M) ≥ e−ε(4π)−n/2(n− 2ε)α(ε)C(A, ε)

∫ +∞

r0

sn−1−2nεe−s2/4ds.

For any fixed A > 0 and v > 0, the right hand side of the above inequality is a
continuous function about ε, and equals 1 as ε → 0. Hence there exists a uniform
constant εn,A,v depending only on n,A and v, such that if R ≤ εn,A,v, we have

(3.10) Volf (M) ≥ 1− ε′n
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where ε′n is the constant in Theorem 0.2. Then Theorem 0.1 follows from Theorem
0.2. �
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