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ABSTRACT. We refine and generalise a Rogers-Ramanujan type partition iden-
tity arising from crystal base theory. Our proof uses the variant of the method
of weighted words recently introduced by the first author.

1. INTRODUCTION

As combinatorial statements the Rogers-Ramanujan identities assert that for
t =0 or 1 and for all non-negative integers n, the number of partitions of n into
parts differing by at least two and having at most ¢ ones is equal to the number
of partitions of n into parts congruent to £(2 — ¢) modulo 5. As g-series identities
they say that
n24(1—i)n
(1.1) Zq (¢; = 72=i. 5 : 3Hi. 5) )
= (@D (> 0°) 00 (€*5¢°) o

where for n € NU {co} we have
n—1
(a;q)n = [ [ (1 — ag®).
k=0
A Lie-theoretic interpretation and proof of these identities were given by Lepowsky
and Wilson [21,22]. Up to a factor of (—¢;¢)so, the right-hand side of (LI is

the principally specialised Weyl-Kac character formula for level 3 standard Agl)—
modules [I9,20], while the product of this factor and the left-hand side corresponds
to bases constructed from vertex operators.

The vertex operator approach of Lepowsky and Wilson was subsequently ex-
tended by many authors to treat level k and/or other affine Lie algebras, beginning
a fruitful interaction between Lie theory and partition theory. For some examples
of vertex operator constructions leading to partition identities, see [8[9,23H25[30],
and for some combinatorial approaches to such partition identities we refer to
[11,17) (L1116,
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In [28], Primc observed that the difference conditions in certain vertex opera-
tor constructions correspond to energy functions of perfect crystals, and in [27] he
studied partition identities of the Rogers-Ramanujan type coming from crystal base
theory. (For other early examples of the study of Rogers-Ramanujan type identities
from the point of view of crystal bases, see [17,2629].) Here the Weyl-Kac charac-
ter formula again gives the partitions defined by congruence conditions, while the
crystal base character formula of Kang, Kashiwara, Misra, Miwa, Nakashima and
Nakayashiki [I8] ensures the correspondence with partitions defined by difference
conditions.

In this paper we will be concerned with the following partition identity of Primc.
Consider partitions (A1, Ag,...) into parts occurring in the four colours a,b, ¢, d,
with the order

(1.2) 1o <1, <1.<1g <2, <25 <2, <25 < e,

where k. denotes the part k of colour z for k¥ € N and z € {a,b,c,d}. Let the
minimal difference between consecutive parts of colour x and y be given by the
entry (x,y) in the matrix

a b c d
a2 1 2 2
b1 01 1
(1.3) D= c|l0 1 0 2
d\0 1 0 2
Then
(1.4) Zqz,@((2k—1>Ak(A>+2k(3k(x>+ck(A))+(2k+1)Dk(A)): LI

where the sum is over the coloured partitions A satisfying the difference conditions
given by (L3) and where A (A) (resp. Br(A), Cr(A), Di(A)) denotes the number of
parts k of colour a (resp. b,¢,d) in A. In other words, if the coloured integers in
([T2) are transformed by

ke — 2k —1,

ky — 2k,
(1.5) ke — 2k,

kg — 2k +1,

the generating function for the resulting coloured partitions with the difference
conditions_inherited from (3] is equal to the generating function for ordinary
partitions

Our main result is a generalisation and refinement of Primc’s identity.

Theorem 1.1. Let A(n;k, ¢, m) denote the number of four-coloured partitions of
n with the ordering (L2) and matriz of difference conditions (L3)), having k parts

IThis was actually stated with a question mark by Primc, who was unsure of the application
of the crystal base formula of [18] to the case of the Agl)—crystal whose energy matrix is ([[3]). We
are indebted to K. Misra for pointing out that this case is covered by Section 1.2 of [18], rendering
Primc’s question mark unnecessary.
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coloured a, £ parts coloured ¢ and m parts coloured d. Then
—a4; 4%) oo (—dg; ¢°)
(43 @)oo (cq; 4%) o

Z A(n; k, 0, m)q" a*cd™ = (
n,k,€,m>0
Under the dilations
q— ¢,
(1.6) a—aq ',
d — dq,

the integers in (L.2) are transformed by

ko = (2k —1)4,
ky — 2ky,

ke — 2k,

kg — (2k+ 1)q,

(1.7)

their order becomes
lg <2 <2.<33<3, <4p<4e<bHg<---
and the matrix D in ([3)) becomes

a b ¢ d

a4 1 3 2
bl13 0 2 1
Da= 1 2 0 3
d\2 3 1 4

Considering the a-parts and c-parts together coloured red and the b-parts and the d-
parts together coloured green, this gives the following refinement of Primc’s identity
in terms of two-coloured partitions.

Corollary 1.2. Let Py denote the set of partitions where parts may appear in
two colours, say red and green, and let c(X;) denote the colour of a part \;. Let
As(n; k,£,m) denote the number of partitions (A1, \a,...) of n in Py having k odd
red parts, { even red parts, and m odd green parts, such that no part is a green 1
and

1, if A is odd and c(N\;) # c(Aiy1),

Ai — Aig1 > 92, if A is even and c(A;) # c(Nit1),

3, if A is odd and c(\;) = c(Nig1)-
Then
(—ag; ¢*) oo (—dg*;

(425 4%) oo (cq?; ¢*

(1.8) Z As(n; k, £,m)q"akctd™ =

7)o
n,k,£,m>0 )

o0

In other words, if Ba(n;k,¢,m) denotes the number of partitions of n in Py such
that odd parts are distinct and only parts congruent to 2 modulo 4 may be green,
having k parts congruent to 1 modulo 4, £ green parts, and m parts congruent to 3
modulo 4, then

As(nsk,€,m) = Ba(n; k, £,m).
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One recovers Primc’s identity by setting a = ¢ = d = 1, as the dilations in (6]
correspond to (LA and the infinite product in (L8] becomes
(—60Y)(-*1¢Y) 1
(@%0*)c (0% Yoo (430)o0
Another nice application of Theorem [Tl is the dilation

q—dq,
a— aq_?’,
c— cq72,
d — dg®,
where the ordering of integers (L2)) becomes
1o <2, <4p <5y <6, <Tg <8 <9y <o,

the matrix D in ([[3]) becomes

a b ¢ d
a /8 1 7 2
b7 0 6 1
Di= .11 2 0 3]
d\6 7 5 8

and we obtain the following partition identity.

Corollary 1.3. Let Ay(n;k,£,m) denote the number of partitions A = (A1, Aa,...)
of n with k, ¢, and m parts congruent to 1, 2, and 3 modulo 4, respectively, with no
part equal to 3, such that \; — \ip1 > 5 4f (i) \; =3 (mod 4) or if (ii) \; = 0,1
(mod 4) and \j11 = 1,2 (mod 4). Then

(19) Z A4(n k¢ m)qnakcfdm _ (_GQ; qS)oo(—dq7; qs)oo .

nkmzo (4% ") oo (€4 %) oo
In other words, if Ba(n;k,f,m) denotes the number of partitions of n into even
parts not congruent to 6 modulo 8 and distinct odd parts congruent to £1 modulo

8, with k, £, and m parts congruent to 1,2, and 7 modulo 8, respectively, then
Ag(nsk,€,m) = Ba(n; k, £,m).

The proof of Theorem [Tl relies on the variant of the method of weighted words
recently introduced by the first author [I4L[I6]. The difference with the original
method of Alladi and Gordon [2] is that instead of using the minimal partitions
and g¢-series identities, we use recurrences and g¢-difference equations (with colours)
coming from the difference conditions in (I3 and we solve them directly. This is
presented in the next section, and in Section 3 we give some examples and another
application of Theorem [Tl

2. PROOF OF THEOREM [[.1]

2.1. Idea of the proof. To prove Theorem [[LT| we proceed as follows.

Define Gy, = Gi(q;a,c,d) (resp. Ep = Ex(q;a,c,d)) to be the generating func-
tion for coloured partitions satisfying the difference conditions from (3] with the
added condition that the largest part is at most (resp. equal to) k.
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Then we want to find limg_, o, Gk, which is the generating function for all par-
titions with difference conditions, as there is no more restriction on the size of the
largest part.

We start by using (L3) to give simple recurrence equations relating the Gj’s
and the E}’s. Then we combine them to obtain a big recurrence equation involving
only Gy,’s. This is done in Section

Then we use the technique consisting of going back and forth from g¢-difference
equations to recurrences introduced by the first author [I3HI5] and conclude using
Appell’s comparison theorem. This is done in Section 2.3

2.2. Recurrences and ¢-difference equations. We use combinatorial reasoning
on the largest part of partitions to state some recurrences. We have the following
identities:

Lemma 2.1. For all k > 1, we have

(2.1a) Gry — Gy, = By, = d¢" (Bx, + By, + Gr-1),) ,
(2.1b) Gr. — Gy, = Ex, = cd* (B, + By, + G1),)
(2.1¢) Gr, = G, = B, = 4" (B, + G),) 5

(2.1d) Gro — Ge-1y, = Ex, = ad” (Ege-1), + Gi—2),) »

with the initial conditions

Ey, = Ey, = Ey, =0,
Ey, =1,

G_1, =Gy, =0,
Go, = Go, = Gog, = 1.

Proof. We give details only for [2Ial). The other identities follow in a similar
manner. The first equality Gy, — G, = Ey, follows directly from the definitions.
Next, in a partition counted by Ej, we remove the largest part of size k£ and colour
d, giving the factor dg¥. An examination of the difference conditions in (L3 shows
that in the partition remaining the largest part could be k., k,, or a part at most
(k —1)c. This corresponds to the terms Ey, + Ey, + G(—1).- O

The recurrences (2.Ia)-(21d) completely characterise the coloured partitions
with difference conditions of Theorem [[1]

Next we give a recurrence equation involving only Gy, ’s.

Proposition 2.2. For all kK > 3 we have

1-— cq%
(1—cq")Gy, = WG(k—l)d
2.2
(22) aq® + dq* + adg®* o adg®F—1 o
+ 1—gk-1 (k—2)q T 1_g2 (k—3)a>
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with the initial conditions

GOd:17
1 1
G = 1 L (L4 ag)(1 +dg)
1—g¢q 1—cq
G - ¢ (1+ag)(1+dg)(1 - ¢%)
2d_

1-¢9(1-¢*) Q-1 —-¢>)(1—-cq)

Proof. To find the correct initial conditions, we use Lemma Bl Now let us

prove (22).
We first observe that
(23) Gkb = G(k—l)d -+ Eka =+ Ekb-
By equation (ZId), it is clear that for all k,
7
(2.4) B = 75 Gt
Now substituting this with & replaced by k¥ — 1 in equation [2.1d), we get
k
aq
(2.5) Ey, = ————Gp_2,-
1—gh1 (k=2)a
Thus combining equations ([23)), (Z3) and (24]), we obtain
1 aq”®
(2.6) Gk, = WG(HM + TqIHG(kfz)d-

Let us now turn to Ej_. By equation (2.11), we have

B, - (Er, +G )
ke = T o e (k=1).) -
Substituting (Z.1]), we obtain
k k
cq aq
(2.7) By, = 1= off <1 ] G(k:—2)d + G(k—l)u> .

Finally, by equations (ZIa) and (2.ID) and the initial conditions, for all k, we
have

dEkc = CEkd-
Combining that with (Z77)), we obtain that for all k,
dg" ag"
(2.8) Ekd = - ch <1 — qk—l G(k—2)d + G(k—l)c .

Using equations ([26), (Z7), (Z8)) and the fact that
Gry = G, + Ey, + Ey,,
we obtain
1 aqg”

Gry = WGUH)d + WGUHM

(c+d)g" [ ag*
G_ G— .
+ 1 — cqk 1—gk1 (k-2)a T G(k-1).
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Rearranging gives an expression for G(,_1), in terms of Gy, ’s:

(2.9)
_ 11—« 1 ag* (1 + dg*)
G(k—l)c = (C n d)qk <de 1= ¢ G(k—l)d (1 — qk_l)(l — ch)G(k_Q)d .
Substituting this into (27 and simplifying leads to
c c acq®

(2.10) B, = H—ded - mc"(lﬁl)d - (c+d)(1— qkfl)G(k*”d'

On the other hand, using [26), (Z9) and the fact that
Ey, = Gk, — G,

we obtain
1— cghtt 1 — gkt
E, =— @G - G
(2.11) T (et d)gh T T (e d)gR I (1 — gh ) T
) a+c+d+ adg"t? ag”

Crdi—g) Ot~ T g1l

Equating [2I0) and ([ZI1)) and replacing k by k— 1 yields the desired recurrence
equation. O

2.3. Finding limy_,o Gk(g;a,c,d). To finish the proof we wish to calculate
limg o0 G, (q; a,c,d), where the Gy, ’s satisfy the recurrence of order 3 in (22)).
This is in contrast to classical partition identities, where the recurrence/g-difference
equation is typically of order 1 (see for example [3H6]). The problem of treating
higher order recurrences/¢-difference equations has recently come up in work of the
first author on overpartition identities [12HI5], and her method applies here as well.
Specifically, we transform the recurrence of order 3 into a simple one of order 2,
and then, as in the classical case, we apply Appell’s comparison theorem [10] to
find the desired limit. In the conclusion we sketch an alternative method suggested
by the referee.
For all £ > 0, let us define
Gr,(q)
Hk = 1%&“.
Thus (Hy) satisfies the following recurrence equation for k > 0 :
(2.12)
(1—cq" =" +cg®* ) Hy = (1—cq®*) Hy_1+(ag" +dg" +adg®™) Hy,_o+adg® ' Hy .

To obtain the correct values of Hy for all £ > 0 using equation (2I2]), we define
the initial values H_1 =1 and Hy, = 0 for all k < —2.
We now define

flx) = ZHk—ll’k

and convert equation (2I2) into a g-difference equation on f:

(2.13) (1—2)f(x) = (1+ g +az?q + da*q) f(zq) — (1 + :UQ)(S — adz*¢®) f(z¢?),
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together with the initial conditions

f(o) :H—l = 1a

£10) = Hy= .

This is a g-difference equation of order 2, which is still not obvious to solve. But we
make another transformation to obtain a very simple recurrence of order 2. Define

‘We obtain

(2.14) (1—2%)g(x) = (1+ g + az’q + dz?q)g(zq) — (2 — adz*q*)g(xq?)
and

9(0) = f(0) =1,

g0 =ro-1% - L

Finally let us define (a,) by

Z anx” = g(x).

n>0
Then (a,,) satisfies the recurrence equation
(1 — " ="+ cqz”_l) ap = (1 +ag" 4+ dg"t + adqQ”_Q) Qp_2,
which simplifies to

(1+ag" ") (1+dg" )

(2.15) apy, = A= ¢V —cg 1) (n—2,

and the initial conditions

Thus for all n > 0, we have

_ (204 @)n(dg ) (20 0)n(=dg; ¢)n
(4% *)n(cq; ¢*)n

a2n

and
(—ag? ¢*)n(—dg* ¢*)n
(@3 ¢*)n(ca? ¢*)n

a2n4+1 =
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We now conclude using Appell’s comparison theorem. We have
lim Gg(gq;a,c,d) = lim Hy
k—o0 k—o0

= lim (1 —:v)ZHk,lxk

r—1—

k>0
— lim (1-2)f(x)
= lir{lﬁ(l —1x)g(x) H(1 + zq")
z— kS0
= (—q; q)oo mlir{lﬁ(l — {E2) Z a2n£L'2n

n>0

= (=4 @)oo lim_agy,

(=4 9)oo(—04; ¢*) oo (—dq; ¢*) o
(4% ¢%) oo (s 4*) oo

(046 o (—dg; %)

N O

We used Appell’s theorem on the second line and on the sixth with x replaced by
2
x°.

3. EXAMPLES AND FURTHER RESULTS

We begin this section by illustrating Corollaries and [[3l First, the eleven
two-coloured partitions of 6 satisfying the difference conditions in Corollary and
having no green 1 are the following, where green parts are marked with a prime:

(6), (6'), (5,1), (5, 1), (4,2), (4,2), (4,2, (4, 2),
(3,2,1),(2,2,2),(2/,2',2").
On the other hand, the eleven two-coloured partitions with distinct odd parts where
only parts congruent to 2 modulo 4 can be green are
(6),(6),(5,1),(4,2),(4,2),(3,2,1), (3,2, 1),
(2,2,2),(2,2,2),(2,2',2'),(2,2',2").

One may then easily verify that As(6;k,¢,m) = Ba(6;k,¢,m) for a given choice
of (k,¢,m). For example, A5(6;1,0,1) = B2(6;1,0,1) = 1, the relevant partitions
being (5’,1) and (3,2,1), respectively.

Next, the thirteen partitions of 14 satisfying the difference conditions in Corollary
and having no part equal to 3 are

(14), (13,1),(12,2), (11,2, 1), (10,4), (10,2, 2), (9,2, 2, 1),
(8,2,2,2),(7,2,2,2,1),(6,6,2),(6,4,4),(6,2,2,2,2),(2,2,2,2,2,2,2),
while the thirteen partitions of 14 satisfying the congruence conditions are
(12,2),(10,4),(10,2,2),(9,4,1),(9,2,2,1),(8,4,2),(8,2,2,2),
(7,4,2,1),(7,2,2,2,1),(4,4,4,2),(4,4,2,2,2),(4,2,2,2,2,2),(2,2,2,2,2,2,2).

Again, one easily verifies that A4(13;k,¢, m) = B4(13;k, £, m) for a given choice of
(k,€,m).
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We close with one more application of Theorem [Tl Here parts divisible by 3
may appear in two kinds. Performing the dilation

q—q’,
a—aq !,
c—1,
d — dg,
the ordering of integers (2] becomes
20 <3 <3e<43 <5, <bp<6.<Tg <8 <Y<Y <1,

and the matrix D in (I3) becomes

a b ¢ d
a6 2 5 4
b4 0 3 2
Ds= 1 3 0 5
d\2 4 1 6

Letting b-parts and c-parts be ordinary and primed multiples of 3, respectively, we
obtain the following partition identity.

Corollary 3.1. Let Ps denote the set of partitions where parts divisible by 3 may
appear in two kinds, say ordinary and primed. Let Az(n;k,m) denote the number of
partitions of n in Ps with k and m parts congruent to 2 and 1 modulo 3, respectively,
such that A\; # 1 and

v s 3 G (mod 3) € ({0.2),{0.2}) or ({0,1}.{0. 1)),
SN i3 N A and N — N 22 (mod 3).

Then

(3.1) Z As(n; k,m)q"aFd™ =

n,k,m>0

(=% ¢°) o (—dg*; ¢°) oo (0% ¢*) o
(0% ¢%) oo
In other words, if Bs(n;k, m) denotes the number of partitions of n in Ps with k

and m parts congruent to 2 and 4 modulo 6, respectively, such that primed multiples
of 3 may not repeat, then

A3(n7 k7m) = B3(n7 k7m)

Note that the generating function in ([BI) differs only slightly from the infi-
nite product appearing in the Alladi-Andrews-Gordon generalisation of Capparelli’s
identity [1],

(—aq®;4%) 00 (—bg*; ¢®) oo (4% ¢°) o
4. CONCLUDING REMARKS

We note that using the g-binomial identity along with the formulas for a,, and
the definitions of Grg, Hrq, f(n) and g(n) in Section 23] it can be shown that

L(k+1)/2] k—2i41
(4.1) Gro= (- % "3 )(—aq;qz)i(—dq;qz)i'
‘ (¢ Q)k-2i+1(0% ¢%)i(cq; ¢)i
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The referee has kindly pointed out an alternative approach to this generating func-

tion starting from the recurrence in Proposition The idea is to recursively
define sequences g,(j) and h,(C with gk = Gy, by

h,(f) = lim g,(e),

c—00

gt = (1= et @ - 1)),

where the existence of h,(:) follows from the recurrence (plus initial conditions) for
(1). At each step one uses the recurrence for the g,(;) and formula for the hg) to

(i41) (@ (4)

find a recurrence for the g, and a formula for the thH). The recurrence for g,

is the following;:
1- Cq2kg(i) n aq® + dq* + adg®* ;)
1— qk k—1 1— qkfl k—2

k—2i+2

+ aquk—l g(z) + q( 2 ) (1 - quiil) ( aq; q ) ( dq, )1
R (0 @)k—2i+1(q% ¢2)i—1

(1—cq") g =

)

1

where 1/(q; q), = 0 for n < 0. From this one can deduce the recurrence for h,(j)

k—2i+1
ORI Y "3 )(_GQQQ2)i(_dQQq2)i.
: 1—gh 1 (43 @) k—2i+1(9% ¢%)i-1

The result is
k—2i+1
(1) _ _ k41 q( 2 )( aq; q )( dQ7 )
h, =(1—-¢"") :
(q,Q)k72i+1(q a4 )i

We leave the details to the interested reader. Since

@
0
dezg;i)zg TN ko,

S (e %)

we obtain ([@Il). Note that if we replace k by 2k — 1+ § for 6 = 0,1 and use the
fact that
(*3°)

i ! = (= q)os;

i= 21+6
we have
ko o(%37) N
i s = i (=040 3 q<( wa o
_ (~agiq 2) dq;q OOZ ")
( ) 21+6
_ (—aq;qz)oo(—dq;q )so

)

(45 9)oo(cq; ¢*) o

in agreement with Section 2.3. This kind of argument differs from the usual ap-
proach and should be kept in mind for future studies of partition identities.
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