Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a Rogers-Ramanujan type identity from crystal base theory


Authors: Jehanne Dousse and Jeremy Lovejoy
Journal: Proc. Amer. Math. Soc. 146 (2018), 55-67
MSC (2010): Primary 05A17, 11P81, 11P84
DOI: https://doi.org/10.1090/proc/13694
Published electronically: July 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We refine and generalise a Rogers-Ramanujan type partition identity arising from crystal base theory. Our proof uses the variant of the method of weighted words recently introduced by the first author.


References [Enhancements On Off] (What's this?)

  • [1] Krishnaswami Alladi, George Andrews, and Basil Gordon, Refinements and generalizations of Capparelli's conjecture on partitions, J. Algebra 174 (1995), no. 2, 636-658. MR 1334229, https://doi.org/10.1006/jabr.1995.1144
  • [2] Krishnaswami Alladi and Basil Gordon, Generalizations of Schur's partition theorem, Manuscripta Math. 79 (1993), no. 2, 113-126. MR 1216769, https://doi.org/10.1007/BF02568332
  • [3] George E. Andrews, On Schur's second partition theorem, Glasgow Math. J. 8 (1967), 127-132. MR 0220692, https://doi.org/10.1017/S0017089500000197
  • [4] George E. Andrews, A new generalization of Schur's second partition theorem, Acta Arith. 14 (1967/1968), 429-434. MR 0228462
  • [5] George E. Andrews, On partition functions related to Schur's second partition theorem, Proc. Amer. Math. Soc. 19 (1968), 441-444. MR 0225741, https://doi.org/10.2307/2035546
  • [6] George E. Andrews, A general theorem on partitions with difference conditions, Amer. J. Math. 91 (1969), 18-24. MR 0242782, https://doi.org/10.2307/2373264
  • [7] George E. Andrews, Schur's theorem, Capparelli's conjecture and $ q$-trinomial coefficients, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 141-154. MR 1284057, https://doi.org/10.1090/conm/166/01622
  • [8] Stefano Capparelli, On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), no. 2, 335-355. MR 1206124, https://doi.org/10.1006/jabr.1993.1017
  • [9] Stefano Capparelli, A construction of the level $ 3$ modules for the affine Lie algebra $ A^{(2)}_2$ and a new combinatorial identity of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. 348 (1996), no. 2, 481-501. MR 1333389, https://doi.org/10.1090/S0002-9947-96-01535-8
  • [10] P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variable, Dover Publications, Inc., New York, 1957. MR 0089895
  • [11] Jehanne Dousse, A combinatorial proof and refinement of a partition identity of Siladić, European J. Combin. 39 (2014), 223-232. MR 3168527, https://doi.org/10.1016/j.ejc.2014.01.008
  • [12] Jehanne Dousse, On generalizations of partition theorems of Schur and Andrews to overpartitions, Ramanujan J. 35 (2014), no. 3, 339-360. MR 3274872, https://doi.org/10.1007/s11139-013-9532-9
  • [13] Jehanne Dousse, A generalisation of a partition theorem of Andrews, Monatsh. Math. 179 (2016), no. 2, 227-251. MR 3449403, https://doi.org/10.1007/s00605-015-0761-4
  • [14] Jehanne Dousse, Unification, refinement and companions of generalisations of Schur's theorem,
    arXiv:1606.09623, 2016.
  • [15] Jehanne Dousse, A generalisation of a second partition theorem of Andrews to overpartitions, J. Combin. Theory Ser. A 145 (2017), 101-128. MR 3551647, https://doi.org/10.1016/j.jcta.2016.07.003
  • [16] Jehanne Dousse, Siladić's theorem: weighted words, refinement and companion, Proc. Amer. Math. Soc. 145 (2017), no. 5, 1997-2009. MR 3611315, https://doi.org/10.1090/proc/13376
  • [17] Naihuan Jing and Kailash C. Misra (eds.), Recent developments in quantum affine algebras and related topics, Contemporary Mathematics, vol. 248, American Mathematical Society, Providence, RI, 1999. MR 1745251
  • [18] Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449-484. MR 1187560
  • [19] J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Adv. in Math. 29 (1978), no. 1, 15-59. MR 501091, https://doi.org/10.1016/0001-8708(78)90004-X
  • [20] J. Lepowsky and S. Milne, Lie algebras and classical partition identities, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 2, 578-579. MR 0491467
  • [21] James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199-290. MR 752821, https://doi.org/10.1007/BF01388447
  • [22] James Lepowsky and Robert Lee Wilson, The structure of standard modules. II. The case $ A^{(1)}_1$, principal gradation, Invent. Math. 79 (1985), no. 3, 417-442. MR 782227, https://doi.org/10.1007/BF01388515
  • [23] A. Meurman and M. Primc, Annihilating ideals of standard modules of $ {\rm sl}(2,{\bf C})^\sim $ and combinatorial identities, Adv. in Math. 64 (1987), no. 3, 177-240. MR 888628, https://doi.org/10.1016/0001-8708(87)90008-9
  • [24] Arne Meurman and Mirko Primc, Annihilating fields of standard modules of $ sl(2,{\bf C})^\sim $ and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652, viii+89. MR 1458529, https://doi.org/10.1090/memo/0652
  • [25] Arne Meurman and Mirko Primc, A basis of the basic $ sl(3,\mathbb{C})^\sim $-module, Commun. Contemp. Math. 3 (2001), no. 4, 593-614. MR 1869106, https://doi.org/10.1142/S0219199701000512
  • [26] Masato Okado, Anne Schilling, and Mark Shimozono, Crystal bases and $ q$-identities, $ q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 29-53. MR 1874520, https://doi.org/10.1090/conm/291/04891
  • [27] Mirko Primc, Some crystal Rogers-Ramanujan type identities, Glas. Mat. Ser. III 34(54) (1999), no. 1, 73-86. MR 1703736
  • [28] Mirko Primc, Basic representations for classical affine Lie algebras, J. Algebra 228 (2000), no. 1, 1-50. MR 1760954, https://doi.org/10.1006/jabr.1999.7899
  • [29] Anne Schilling and S. Ole Warnaar, Inhomogeneous lattice paths, generalized Kostka polynomials and $ A_{n-1}$ supernomials, Comm. Math. Phys. 202 (1999), no. 2, 359-401. MR 1690046, https://doi.org/10.1007/s002200050586
  • [30] I. Siladić, Twisted $ sl(3,\mathbb{C})^{\sim }$-modules and combinatorial identities,
    arXiv:math/0204042v2, 2002.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05A17, 11P81, 11P84

Retrieve articles in all journals with MSC (2010): 05A17, 11P81, 11P84


Additional Information

Jehanne Dousse
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Email: jehanne.dousse@math.uzh.ch

Jeremy Lovejoy
Affiliation: CNRS, Université Denis Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France
Email: lovejoy@math.cnrs.fr

DOI: https://doi.org/10.1090/proc/13694
Received by editor(s): December 21, 2016
Received by editor(s) in revised form: February 9, 2017, February 13, 2017, and February 14, 2017
Published electronically: July 27, 2017
Additional Notes: The first author was supported by the Forschungskredit of the University of Zurich, grant No. FK-16-098
The authors thank the University of Zurich and the French-Swiss collaboration project No. 2015-09 for funding research visits during which this research was conducted
Communicated by: Ken Ono
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society