Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Real difference Galois theory


Author: Thomas Dreyfus
Journal: Proc. Amer. Math. Soc. 146 (2018), 43-54
MSC (2010): Primary 12D15, 39A05
DOI: https://doi.org/10.1090/proc/13696
Published electronically: July 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we develop a difference Galois theory in the setting of real fields. After proving the existence and uniqueness of the real Picard-Vessiot extension, we define the real difference Galois group and prove a Galois correspondence.


References [Enhancements On Off] (What's this?)

  • [BB62] A. Białynicki-Birula, On Galois theory of fields with operators, Amer. J. Math. 84 (1962), 89-109. MR 0141663, https://doi.org/10.2307/2372805
  • [CH15] Teresa Crespo and Zbigniew Hajto, Real Liouville extensions, Comm. Algebra 43 (2015), no. 5, 2089-2093. MR 3316840, https://doi.org/10.1080/00927872.2014.888561
  • [CHS08] Zoé Chatzidakis, Charlotte Hardouin, and Michael F. Singer, On the definitions of difference Galois groups, Model theory with applications to algebra and analysis. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 349, Cambridge Univ. Press, Cambridge, 2008, pp. 73-109. MR 2441376, https://doi.org/10.1017/CBO9780511735226.006
  • [CHS13] Teresa Crespo, Zbigniew Hajto, and Elżbieta Sowa, Picard-Vessiot theory for real fields, Israel J. Math. 198 (2013), no. 1, 75-89. MR 3096631, https://doi.org/10.1007/s11856-013-0015-x
  • [CHvdP16] Teresa Crespo, Zbigniew Hajto, and Marius van der Put, Real and $ p$-adic Picard-Vessiot fields, Math. Ann. 365 (2016), no. 1-2, 93-103. MR 3498905, https://doi.org/10.1007/s00208-015-1272-2
  • [Coh65] Richard M. Cohn, Difference algebra, Interscience Publishers John Wiley & Sons, New York-London-Sydeny, 1965. MR 0205987
  • [Dyc05] Tobias Dyckerhoff, Picard-vessiot extensions over number fields., Fakultat fur Mathematik und Informatik der Universitat Heidelberg, diplomarbeit, 2005.
  • [Fra63] Charles H. Franke, Picard-Vessiot theory of linear homogeneous difference equations, Trans. Amer. Math. Soc. 108 (1963), 491-515. MR 0155819, https://doi.org/10.2307/1993595
  • [HS08] Charlotte Hardouin and Michael F. Singer, Differential Galois theory of linear difference equations, Math. Ann. 342 (2008), no. 2, 333-377. MR 2425146, https://doi.org/10.1007/s00208-008-0238-z
  • [Lam84] T. Y. Lam, An introduction to real algebra, Rocky Mountain J. Math. 14 (1984), no. 4, 767-814. Ordered fields and real algebraic geometry (Boulder, Colo., 1983). MR 773114, https://doi.org/10.1216/RMJ-1984-14-4-767
  • [Mor09] Shuji Morikawa, On a general difference Galois theory. I, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2709-2732 (English, with English and French summaries). MR 2649331
  • [MU09] Shuji Morikawa and Hiroshi Umemura, On a general difference Galois theory. II, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2733-2771 (English, with English and French summaries). MR 2649332
  • [Sei58] A. Seidenberg, Abstract differential algebra and the analytic case, Proc. Amer. Math. Soc. 9 (1958), 159-164. MR 0093655, https://doi.org/10.2307/2033416
  • [vdPS97] Marius van der Put and Michael F. Singer, Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666, Springer-Verlag, Berlin, 1997. MR 1480919

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 12D15, 39A05

Retrieve articles in all journals with MSC (2010): 12D15, 39A05


Additional Information

Thomas Dreyfus
Affiliation: Université Claude Bernard Lyon 1, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
Email: dreyfus@math.univ-lyon1.fr

DOI: https://doi.org/10.1090/proc/13696
Received by editor(s): November 1, 2016
Received by editor(s) in revised form: February 10, 2017
Published electronically: July 28, 2017
Additional Notes: This work was supported by the labex CIMI. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 648132.
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society