Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

On the algebraic stringy Euler number


Authors: Victor Batyrev and Giuliano Gagliardi
Journal: Proc. Amer. Math. Soc. 146 (2018), 29-41
MSC (2010): Primary 14E30; Secondary 14E15, 14E18, 14L30, 14M27
DOI: https://doi.org/10.1090/proc/13702
Published electronically: July 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We are interested in stringy invariants of singular projective algebraic varieties satisfying a strict monotonicity with respect to elementary birational modifications in the Mori program. We conjecture that the algebraic stringy Euler number is one of such invariants. In the present paper, we prove this conjecture for varieties having an action of a connected algebraic group $ G$ and admitting equivariant desingularizations with only finitely many $ G$-orbits. In particular, we prove our conjecture for arbitrary projective spherical varieties.


References [Enhancements On Off] (What's this?)

  • [AB04] Valery Alexeev and Michel Brion, Stable reductive varieties. II. Projective case, Adv. Math. 184 (2004), no. 2, 380-408. MR 2054021, https://doi.org/10.1016/S0001-8708(03)00164-6
  • [Bat98] Victor V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1-32. MR 1672108
  • [Bat99a] Victor V. Batyrev, Birational Calabi-Yau $ n$-folds have equal Betti numbers, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 1-11.
  • [Bat99b] Victor V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5-33. MR 1677693, https://doi.org/10.1007/PL00011158
  • [Bit04] Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032. MR 2059227, https://doi.org/10.1112/S0010437X03000617
  • [BK94] Michel Brion and Friedrich Knop, Contractions and flips for varieties with group action of small complexity, J. Math. Sci. Univ. Tokyo 1 (1994), no. 3, 641-655. MR 1322696
  • [BM13] Victor Batyrev and Anne Moreau, The arc space of horospherical varieties and motivic integration, Compos. Math. 149 (2013), no. 8, 1327-1352. MR 3103067, https://doi.org/10.1112/S0010437X13007124
  • [BP02] Michel Brion and Emmanuel Peyre, The virtual Poincaré polynomials of homogeneous spaces, Compositio Math. 134 (2002), no. 3, 319-335. MR 1943906, https://doi.org/10.1023/A:1020984924857
  • [Bri93] Michel Brion, Variétés sphériques et théorie de Mori, Duke Math. J. 72 (1993), no. 2, 369-404 (French). MR 1248677, https://doi.org/10.1215/S0012-7094-93-07213-4
  • [Cra04] Alastair Craw, An introduction to motivic integration, Strings and geometry, Clay Math. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 2004, pp. 203-225. MR 2103724
  • [DL99] Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232. MR 1664700, https://doi.org/10.1007/s002220050284
  • [IS05] V. A. Iskovskikh and V. V. Shokurov, Birational models and flips, Uspekhi Mat. Nauk 60 (2005), no. 1(361), 29-98 (Russian, with Russian summary); English transl., Russian Math. Surveys 60 (2005), no. 1, 27-94. MR 2145659, https://doi.org/10.1070/RM2005v060n01ABEH000807
  • [Pas15a] Boris Pasquier, An approach of the minimal model program for horospherical varieties via moment polytopes, J. Reine Angew. Math. 708 (2015), 173-212. MR 3420333, https://doi.org/10.1515/crelle-2013-0103
  • [Pas15b] Boris Pasquier, A survey on the singularities of spherical varieties, arXiv:1510.03995v1.
  • [Pas16] Boris Pasquier, KLT singularities of horospherical pairs, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 5, 2157-2167 (English, with English and French summaries). MR 3533280
  • [Per14] Nicolas Perrin, On the geometry of spherical varieties, Transform. Groups 19 (2014), no. 1, 171-223. MR 3177371, https://doi.org/10.1007/s00031-014-9254-0
  • [Rei83] Miles Reid, Decomposition of toric morphisms, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395-418. MR 717617
  • [Teh09] Jyh-Haur Teh, Motivic integration and projective bundle theorem in morphic cohomology, Math. Proc. Cambridge Philos. Soc. 147 (2009), no. 2, 295-321. MR 2525928, https://doi.org/10.1017/S0305004109002588
  • [Vey01] Willem Veys, Zeta functions and ``Kontsevich invariants'' on singular varieties, Canad. J. Math. 53 (2001), no. 4, 834-865. MR 1848509, https://doi.org/10.4153/CJM-2001-034-1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14E30, 14E15, 14E18, 14L30, 14M27

Retrieve articles in all journals with MSC (2010): 14E30, 14E15, 14E18, 14L30, 14M27


Additional Information

Victor Batyrev
Affiliation: Fachbereich Mathematik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Email: batyrev@math.uni-tuebingen.de

Giuliano Gagliardi
Affiliation: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
Email: gagliardi@math.uni-hannover.de

DOI: https://doi.org/10.1090/proc/13702
Received by editor(s): November 28, 2016
Received by editor(s) in revised form: January 25, 2017
Published electronically: July 28, 2017
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 by the authors

American Mathematical Society