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SPLITTING NUMBERS OF LINKS AND THE FOUR-GENUS

CHARLES LIVINGSTON

(Communicated by David Futer)

Abstract. The splitting number of a link is the minimum number of crossing
changes between distinct components that is required to convert the link into
a split link. We provide a bound on the splitting number in terms of the
four-genus of related knots.

1. Introduction

A link L ⊂ S3 has splitting number sp(L) = n if n is the least nonnegative integer
for which some choice of n crossing changes between distinct components results in
a totally split link. The study of splitting numbers and closely related invariants
includes [1–5, 12, 14]. (In [1, 12, 14], the term splitting number permits self-crossing
changes.) Here we will investigate the splitting number from the perspective of the
four-genus of knots, an approach that is closely related to the use of concordance
to study the splitting number in [3, 4] and earlier work considering concordances
to split links [11]. Recent work by Jeong [10] develops a new infinite family of
invariants that bound the splitting number, based on Khovanov homology. We will
be working in the category of smooth oriented links, but notice that the splitting
number is independent of the choice of orientation.

To state our results, we remind the reader of the notion of a band connected
sum of a link L. A band b is an embedding b : [0, 1] × [0, 1] → S3 such that
Image(b) ∩ L = b([0, 1] × {0, 1}). The orientation of the band must be consistent
with the orientation of the link. To make this precise, first choose an orientation
on [0, 1] × [0, 1]. Then b([0, 1] × {0, 1}) has an orientation arising as a subspace of
the boundary of an embedded oriented disk; it is also oriented as a subspace of L.
Those two orientations must agree. For an illustration, see Figure 1. The link Lb

is defined to be L \ (b([0, 1] × {0, 1})) ∪ (b({0, 1} × [0, 1])). Similarly, for a link L
of k components, we can consider a set of k − 1 disjoint bands β = {b1, . . . , bk−1}
and use these to construct a link Lβ ; we will always work in the setting that β
has the property that Lβ is connected. We will call such a set of bands a minimal
connecting set of bands.

For a knot K, we denote the mirror image of K with string orientation reversed
by K. The minimum genus of a smooth properly embedded oriented surface in the
4–ball with boundary K is called the four-genus of K, denoted g4(K).

Theorem 1.1. Let L = L1 ∪ · · · ∪Lk be an oriented k–component link with linking
numbers lk(Li, Lj) = li,j for i �= j, and let β be a minimal connecting set of bands.
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Let N be the total linking number: N =
∣∣∣∑i<j li,j

∣∣∣. Then

sp(L) ≥ 2g4(Lβ#
k
i=1Li)−N.

As a simple corollary, we have:

Corollary 1.2. If L is a k–component link with unknotted components and with all
linking numbers 0, then for any minimal set of connecting bands, sp(L) ≥ 2g4(Lβ).

Example 1.3. The simplest nontrivial link, the Hopf link, illustrates the role of
the choice of β. One band connected sum yields the unknot, with four-genus 0,
and another yields the trefoil, with four-genus 1; from this, Theorem 1.1 implies
the obvious, that the splitting number is 1.

Example 1.4. Two basic examples of nonsplit links for which all linking numbers
are 0 are the Whitehead link and the Borromean link. Most tools for studying
splittings handle these examples, as does Corollary 1.2. For both links, band moves
yield the trefoil knot, of four-genus 1, showing the splitting number is at least 2.
Splittings with exactly two crossing changes are easily constructed.

Here is a generalization of an example in [4], studied in more depth in [8]. Con-
sider the two-bridge link illustrated in Figure 1, with m,n and l nonnegative. The
numbers in the boxes represent full twists. Without loss of generality, we can as-
sume m ≥ n. The linking number is m − n. The illustrated band leads to a knot
Lb whose signature is easily computed to be −2m, so g4(Lb) ≥ m. (In fact, Lb is
the connected sum of the torus knot T2,2m+1 and a genus 1 knot of signature 0.)
Thus, by Theorem 1.1, sp(L) ≥ 2m− (m− n) = n+m. The link can evidently be
split with n+m crossings changes, so sp(L) = n+m.

Figure 1. A family of two-bridge links.

The cases of (m,n, l) = (1, 2, 1) and (m,n, l) = (2, 3, 1) are the links L9a30 and
L11a372. The splitting numbers of these were determined in [5], with L9a30 serving
as a basic example and L11a372 as an example of a case which could not be resolved
in [2].

Theorem 1.1 provides a surprisingly easy and effective tool in determining split-
ting numbers, but it is not difficult to find examples for which it is weaker than
previously developed methods. One reason is that the bound given in Theorem 1.1
is in fact a bound on the concordance splitting number, csp(L), which is implicitly
studied in [4]. This invariant is discussed in Section 3. The next family of examples
presents the distinction between the two invariants.
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Example 1.5. Figure 2 illustrates a link LK , the Bing double of a knot K. The
presence of an incompressible torus in its complement shows that if K is nontrivial,
then sp(LK) = 2. If K is slice, then LK is concordant to the unlink, so csp(L) = 0
and the splitting number cannot be detected by Theorem 1.1.

The indicated band move on the Bing double produces the untwisted Whitehead
double, Wh(K). Thus, by Corollary 1.2, if K is such that Wh(K) is not slice, then
LK is not concordant to a split link. As an example, letting K = Wh(T2,3) yields
an example of a link LK which is topologically but not smoothly concordant to a
split link. Presumably, algebraic invariants would not detect the splitting number
in this case.

Alternative approaches to showing the concordance splitting number of LK is
2 (for specific choices of K) can be based on showing that the Bing double is not
strongly slice, which was done, for instance, in [6, 7].

Figure 2. The Bing double, LK .

2. Proof of Theorem 1.1

2.1. The trace of the isotopy. A set of crossing changes of a link L0 = L1∪· · ·∪
Lk into a split link, which we will denote L1, corresponds to an isotopy of L0 with
double points, which we call the splitting isotopy. We will write L1 = L1 � · · · �Lk

to distinguish it from L0 and to emphasize that the individual components are
identical as knots. In general we will use the symbol � to indicate split links.

The trace of the isotopy from L0 to L1 in S3× [0, 1] is an immersed concordance.
To be specific, an immersed concordance between k–component links L0 and L1 is
a smooth immersion

F : S1 × [0, 1]× {1, . . . , k} → S3 × [0, 1]

such that

F (S1 × i× j) = Li
j ⊂ S3 × i

for i = 0, 1 and j = 1, . . . , k. Singular points are required to be isolated transverse
double points.

In the setting of Theorem 1.1, L0 = L = L1 ∪ · · · ∪ Lk and L1 = L1 � · · · � Lk.
The immersed concordance consists of a set of k embedded concordances intersect-
ing transversely in double points. These embedded concordances are called the
components of the immersed concordance, although they need not be disjoint.
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Projection of S3 × [0, 1] onto [0, 1] defines a height function. In the current
situation, there are no critical points for the height function on the concordance;
each component is an embedded product concordance.

The splitting isotopy of L0 to L1 in S3 can be extended to the bands of β by
isotoping the bands so that they do not interfere with the crossings. Using this, we
can construct an immersed concordance from L0

β to L1
β′ for some set of bands β′.

2.2. Forming the connected sum with the Li. We now form the connected
sum of L0

β with #i Li. We do this by forming the connected sum of each Li with

the corresponding Li, so that the Li is in a small ball far from the basepoints of
any b ∈ β. It is now clear that we can modify the immersed concordance to form
an immersed concordance from Lβ #i Li to (

⊔
i(Li #Li))β′ .

2.3. Forming an immersed slice disk. Observe that the knot (
⊔

i(Li#Li))β′

is slice. A set of k − 1 band moves (dual to the bands of β′) yields the link
(L1#L1) � · · · � (Lk #Lk). Since the components are split and each is slice, we
see that the original knot is slice.

Since the knot L0
β #i Li bounds a singular concordance to a slice knot, it bounds

a singular slice disk in B4 with corresponding singular points.

2.4. Counting and resolving the double points. For each pair (i, j), let pi,j
and ni,j denote the number of positive and negative crossing changes between Li

and Lj in the splitting sequence for L, respectively. The linking numbers are given
by li,j = pi,j − ni,j .

Since pi,j ≥ 0 and ni,j ≥ 0, it follows that (pi,j + ni,j) − |pi,j − ni,j | ≥ 0. The
difference is clearly even, so we write

(pi,j + ni,j)− |pi,j − ni,j | = 2mi,j ,

where mi,j ≥ 0.
Let P be the set of pairs (i, j), i < j, such that the linking number li,j ≥ 0 and

let N be the set of pairs (i, j), i < j, such that the linking number li,j < 0. For
(i, j) ∈ P, one sees that mi,j = ni,j ; for (i, j) ∈ N , mi,j = pi,j .

For each pair (i, j) ∈ P, we have |li,j | = pi,j − ni,j , so that pi,j = |li,j | + ni,j =
|li,j |+mi,j . The number of negative crossing changes is ni,j = mi,j .

Similarly, for each pair (i, j) ∈ N , the number of negative crossing changes
between the i and j components during the splitting is |li,j |+mi,j , and the number
of positive crossing changes is pi,j = mi,j .

It follows from this count that the total number of positive double points in the
immersed concordance is

A =
∑

(i,j)∈P
|li,j |+

∑
(i,j)∈P∪N

mi,j .

The number of negative double points is

B =
∑

(i,j)∈N
|li,j |+

∑
(i,j)∈P∪N

mi,j .
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2.5. Building an embedded surface in the 4–ball bounded by Lβ #i Li.
Assume now that the initial sequence of crossing changes was a minimal splitting
sequence. Our goal is to build an embedded surface bounded by Lβ #i Li in the
4–ball by tubing together pairs of canceling double points in the immersed slice disk
(which we temporarily denote B) and then resolving the remaining double points
individually. Here is a summary of the construction.

Let x0 and x1 be a positive and negative double point on the immersed surface.
There is an embedded path γ on B from x0 to x1 which misses all other double
points. A tubular neighborhood N(γ) of γ is diffeomorphic to B3 × I. Up to
diffeomorphism, we have

N(γ) ∩B ∼=
(
{(0, x, y)} × {0}

)
∪
(
{(z, 0, 0)} × I

)
∪
(
{(0, x, y)} × {1}

)
,

where the set of pairs {(x, y)} ranges over B2 \ (0, 0), and z ranges over B1. The

immersed surface B is now modified by removing the sets
(
{(0, x, y)} × {0}

)
and(

{(0, x, y)} × {1}
)
and replacing them with {(0, s, t)} × I, where the set of pairs

{(s, t)} is restricted to range over the unit circle. This construction, called ambient
surgery, has replaced a pair of disks on the immersed surface with an annulus, and
the new immersed surface has two fewer double points. The resulting surface is
orientable because the intersection points are of opposite sign. This operation has
increased the genus by one.

If any double points remain after removing these pairs of double points, they can
be eliminated one at a time by removing a pair of transversely intersecting disks
and replacing them with an annulus; this also increases the genus by one.

On B we had A positive double points and B negative double points. Thus, we
can find a set of min(A,B) of pairs of double points having opposite sign. After
performing the surgery to remove these pairs of points, the number of remaining
double points is A+B−2min(A,B) = max(A,B)−min(A,B). Thus, after removing
these double points, the genus of the resulting surface is min(A,B)+ (max(A,B)−
min(A,B)) = max(A,B).

We have now constructed an embedded bounding surface of genus

g = max(A,B) = (|A+B|+ |A−B|)/2.

Using the formulas for A and B, this becomes

2g =

⎛
⎝ ∑

(i,j)∈P∪N
|li,j |+ 2

∑
(i,j)∈P∪N

mi,j

⎞
⎠+

∣∣∣∣∣(
∑

(i,j)∈P
|li,j | −

∑
(i,j)∈N

|li,j |)
∣∣∣∣∣.

It follows from the definition of mi,j that |li,j | + 2mi,j = pi,j + ni,j . From this we
see that the expression in the first set of parentheses equals the splitting number;
the second term (the absolute value of the difference of sums) is simply the absolute
value of the sum of the linking numbers, called N in the statement of Theorem 1.1.
Thus,

2g = sp(L) +N,

and so, as desired,

sp(L) = 2g −N ≥ 2g4(Lβ#
k
i=1Li)−N.
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3. Concordance splitting

The lower bound on the splitting number given in Theorem 1.1 is in fact a bound
on the concordance splitting number.

Definition 3.1. A link L has concordance splitting number csp(L) = n if n is the
least nonnegative integer such that there is an immersed concordance form L to a
split link having n double points and each component is embedded.

Example 3.2. Example 1.5 demonstrates that for some links csp(L) < sp(L).

Notice that in the definition, the concordance need not be to the link L1�· · ·�Lk.
However, we have the following.

Lemma 3.3. If csp(L) = n, then there is an immersed concordance, with n double
points and each component embedded, from L to L1 � · · · � Lk.

Proof. The end of the immersed concordance is a link L′
1 � · · · � L′

k. Since the
components of the immersed concordance are embedded, each L′

i is concordant
to Li. Thus, the immersed concordance can be extended using these individual
concordances so that the ending link is L1 � · · · � Lk. �

We have the following analog of Theorem 1.1.

Theorem 3.4. Let L = L1 ∪ · · · ∪Lk be an oriented k–component link with linking
numbers lk(Li, Lj) = li,j for i �= j, and let β be a set of k − 1 bands for which Lβ

is connected. Let N be the total linking number: N =
∣∣∣∑i<j li,j

∣∣∣. Then

csp(L) ≥ 2g4(Lβ#
k
i=1Li)−N.

Proof. Much of the proof proceeds as before, but there is one significant difficulty.
The presence of possible maximum points in the concordance prevents one from
converting the concordance of the link into a concordance of its band connected
sum. The bands might interfere with capping off unknotted components that arise
from index two critical points. Here is how the proof is adjusted.

The concordance can be modified so that all critical points of index 2 occur at
height 3/4 and all other critical points and double points occur below the height of
1/4. At level 1/2 we have the link L′ � U1 � · · · � Ur, where the Ur form an unlink
split from L′ (each component of which is capped off at level 3/4).

The index 0 and index 1 critical points do not interfere with the constructions
used earlier, and from this one finds that there is a genus 0 immersed corbordism
from Lβ #i Li to (

⊔
i(Li#Li))β′ �U1 � · · · �Ur. Notice that the bands in β′ might

link the Ui, and this is the point of difficulty. However, we can use this cobordism
to construct an immersed slice disk: perform the band moves dual to the β′ to build
a split link with all components slice knots (some are the Li #Li and some are the
Ui); these can be capped off to form the immersed slice disk.

The rest of the proof is identical to that of Theorem 1.1. �
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