A CHAIN TRANSITIVE ACCESSIBLE PARTIALLY HYPERBOLIC DIFFEOMORPHISM WHICH IS NON-TRANSITIVE

SHAOBO GAN AND YI SHI
(Communicated by Yingfei Yi)

Abstract

In this paper, we construct a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}, which is accessible and chain transitive, but not transitive.

1. Introduction

Let M be a closed Riemannian manifold, and $f: M \rightarrow M$ a diffeomorphism. We say f is transitive, if for any two non-empty open sets $U, V \subset M$, there exists $n>0$, such that $f^{n}(U) \cap V \neq \emptyset$. The transitivity of f is equivalent to the existence of a point x whose positive orbit $\left\{f^{n}(x): n>0\right\}$ is dense in M.

We call a point $x \in M$ a non-wandering point of f, if for any neighborhood U_{x} of x, there exists $n>0$, such that $f^{n}\left(U_{x}\right) \cap U_{x} \neq \emptyset$. The non-wandering set $\Omega(f)$ is the set of all non-wandering points of f.

For two points $x, y \in M$, we say y is chain attainable from x, if for any $\epsilon>0$, there exists a finite sequence $\left\{x_{i}\right\}_{i=0}^{n}$ with $x_{0}=x$ and $x_{n}=y$, such that $d\left(f\left(x_{i}\right), x_{i+1}\right)<\epsilon$ for any $0 \leq i \leq n-1$. A point $x \in M$ is called a chain recurrent point, if it is chain attainable from itself. The set of chain recurrent points is called a chain recurrent set of f, denoted by $\mathrm{CR}(f)$. If every point is chain recurrent, we say f is chain transitive.

It is clear that every non-wandering point is chain recurrent and if f is transitive, then it is chain transitive, but not vice versa. However, from the powerful chain connecting lemma [3, there exists a residual subset $\mathcal{R} \subset \operatorname{Diff}^{1}(M)$, such that for any $f \in \mathcal{R}$, we have $\Omega(f)=\operatorname{CR}(f)$ and if f is chain transitive, then f is transitive.

A diffeomorphism $f: M \rightarrow M$ is partially hyperbolic, if the tangent bundle $T M$ splits into three continuous non-trivial $D f$-invariant bundles $T M=E^{s s} \oplus E^{c} \oplus E^{u u}$, such that $\left.D f\right|_{E^{s s}}$ is uniformly contracting, $\left.D f\right|_{E^{u u}}$ is uniformly expanding, and $\left.D f\right|_{E^{c}}$ lies between them:

$$
\begin{gathered}
\left\|\left.D f\right|_{E^{s s}(x)}\right\|<\left\|\left.D f^{-1}\right|_{E^{c}(f(x))}\right\|^{-1}, \\
\left\|\left.D f\right|_{E^{c}(x)}\right\|<\left\|\left.D f^{-1}\right|_{E^{u u}(f(x))}\right\|^{-1}, \quad \text { for all } x \in M .
\end{gathered}
$$

It is known ([12, (4.1) Theorem]) that there is a unique f-invariant foliation $\mathcal{W}^{s s}$ (resp. $\mathcal{W}^{u u}$) tangent to $E^{s s}$ (resp. $E^{u u}$).

An important geometric property of partially hyperbolic diffeomorphisms is accessibility. A partially hyperbolic diffeomorphism f is accessible, if any two points

[^0]in M can be joined by an arc consisting of finitely many segments contained in the leaves of foliations $\mathcal{W}^{s s}$ and $\mathcal{W}^{u u}$. Accessibility plays a key role for proving the ergodicity of partially hyperbolic diffeomorphisms ([7,11]). Moreover, it has been observed ([6, 8, 11]) that most of partially hyperbolic diffeomorphisms are accessible.
M. Brin [5 has proved that for a partially hyperbolic diffeomorphism $f: M \rightarrow$ M, if f is accessible and $\Omega(f)=M$, then f is transitive. See also [1. So it is natural to ask the following question: if a partially hyperbolic diffeomorphism f is accessible and $\operatorname{CR}(f)=M$, is f transitive? In this paper, we construct an example which gives a negative answer to this question. This implies Brin's result could not be generalized to the case where $\operatorname{CR}(f)=M$.

Let $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a hyperbolic automorphism over \mathbb{T}^{2}. We say $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is a partially hyperbolic skew-product over A, if for every $(x, t) \in \mathbb{T}^{3}=\mathbb{T}^{2} \times \mathbb{S}^{1}$, we have

$$
f(x, t)=\left(A x, \varphi_{x}(t)\right) \quad \text { and } \quad\left\|A^{-1}\right\|^{-1}<\left\|\varphi_{x}^{\prime}(t)\right\|<\|A\|
$$

We will consider $\mathbb{S}^{1}=\mathbb{R} / 2 \mathbb{Z}$, and usually use the coordinate $\mathbb{S}^{1}=[-1,1] /\{-1,1\}$.
Our main result is the following theorem.
Theorem 1. There exists a partially hyperbolic skew-product C^{∞} diffeomorphism $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$, such that f is accessible and chain transitive, but not transitive.

2. Construction of diffeomorphism

We will first construct a chain transitive partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}, such that its non-wandering set is not the whole \mathbb{T}^{3} and not transitive. Then a small perturbation will achieve the accessibility, and still preserve the dynamical properties.

First we need a diffeomorphism on \mathbb{S}^{1} that is chain transitive but the nonwandering set is not the whole circle.

Let $\theta: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be defined as

$$
\theta(t)=-\cos (2 \pi t)+1, \quad t \in \mathbb{R} / 2 \mathbb{Z}
$$

It is a C^{∞} function on \mathbb{S}^{1}. We can see that $\theta \geq 0$ on \mathbb{S}^{1}, and it has two zero points 0 and $-1=1$. The vector field $\left\{\theta(t) \cdot \frac{\partial}{\partial t}\right\}$ is a C^{∞} vector field on \mathbb{S}^{1}, and its time- r map for $0<r \ll 1$ is the diffeomorphism we need on the circle (see Figure 1), i.e., the time- r map of $\theta(t) \cdot \frac{\partial}{\partial t}$ is chain transitive, and its non-wandering set consists of only two fixed points 0 and $-1=1$. Using the product structure, we can define a vector field X on $\mathbb{T}^{3}=\mathbb{T}^{2} \times \mathbb{S}^{1}$.

Lemma 2.1.

$$
X(x, t)=\theta(t) \cdot \frac{\partial}{\partial t}, \quad \forall(x, t) \in \mathbb{T}^{3}=\mathbb{T}^{2} \times \mathbb{S}^{1}
$$

is a C^{∞} vector field on \mathbb{T}^{3}. Moreover, for every $r>0$, the time-r map X_{r} of the flow generated by X satisfies the following properties:

- $X_{r}(x, t)=(x, \varphi(t))$ for every $(x, t) \in \mathbb{T}^{3}$.
- For $i=0,1, X_{r}(x, i)=(x, i)$ for every $x \in \mathbb{T}^{2}$.
- For every $\delta \in(0,1 / 2)$, for every $(x, t) \in \mathbb{T}^{3}$ with $t \notin\{0,1\}$, we have $\varphi(t)>t$. In particular, there exists $0<\tau=\tau(r, \delta)<\delta / 2$, such that

$$
\varphi(t)>t+\tau, \quad \forall(x, t) \in \mathbb{T}^{2} \times\{-\delta, 1-\delta\} .
$$

Figure 1. Chain transitive systems with non-empty wandering sets.
For $r>0$, define $f_{r}=X_{r} \circ(A \times \mathrm{id}): \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$:

$$
f_{r}(x, t)=(A x, \varphi(t)),
$$

where $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is a hyperbolic automorphism, and $\varphi(t)$ is the function in the last lemma. Then for every $\delta \in(0,1 / 2)$ and $\tau=\tau(\delta, r)$ in the last lemma, if r is small enough, f_{r} satisfies the following properties (Figure 1):

- f_{r} is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}. Let the partially hyperbolic splitting be:

$$
T \mathbb{T}^{3}=E^{s s} \oplus E^{c} \oplus E^{u u}
$$

and denote by $W^{s s / u u}$ the stable/unstable manifolds generated by $E^{s s / u u}$.

- Let $p \in \mathbb{T}^{2}$ be a fixed point of A. Then in the fixed center fiber $S_{p}=\{p\} \times \mathbb{S}^{1}$, $\left.f_{r}\right|_{S_{p}}$ is chain transitive and has two fixed points $P_{i}=(p, i) \in \mathbb{T}^{2} \times \mathbb{S}^{1}$ for $i=0,1$.
- For $i=0,1, f_{r}$ preserves $\mathbb{T}_{i}=\mathbb{T}^{2} \times\{i\}$ invariant, and $\left.f_{r}\right|_{\mathbb{T}_{i}}=\left.A\right|_{\mathbb{T}_{i}}$. Moreover,

$$
\mathbb{T}_{i}=\overline{W^{s s}\left(P_{i}, f_{r}\right)}=\overline{W^{u u}\left(P_{i}, f_{r}\right)}
$$

- For every $(x, t) \in \mathbb{T}^{2} \times\{-\delta, 1-\delta\}$, we have $\varphi(t)>t+\tau$.

Now f_{r} is a chain transitive but non-transitive partially hyperbolic diffeomorphism on \mathbb{T}^{3}. However, f_{r} is not accessible, since the sum of stable and unstable bundles of f_{r} is integrable. We will make another perturbation to achieve the accessibility, and preserve other dynamical properties.

Let $p \in \mathbb{T}^{2}$ be a fixed point of the hyperbolic automorphism A. Take a small enough neighborhood $U(p)$ of p in \mathbb{T}^{2}, such that

- for every $x \in U(p) \backslash W_{\text {loc }}^{s}(p)$, there exists some $n>0$, such that $A^{n} x \notin U(p)$;
- for every $x \in U(p) \backslash W_{\text {loc }}^{u}(p)$, there exists some $n<0$, such that $A^{n} x \notin U(p)$.

Now take a local coordinate $\left\{\left(x_{s}, x_{u}\right)\right\}$ in $U(p)$ with $p=(0,0)$, so that

$$
A\left(x_{s}, x_{u}\right)=\left(\lambda \cdot x_{s}, \lambda^{-1} \cdot x_{u}\right),
$$

for every $\left(x_{s}, x_{u}\right) \in[-10,10]_{s} \times[-10,10]_{u} \subset U(p)$. Here λ is the eigenvalue of A with $0<|\lambda|<1$, and we assume $1 / 10<\lambda<1$ for simplicity. In the rest of this paper, the local coordinate of $\left(U(p) ;\left(x_{s}, x_{u}\right)\right)$ is the only coordinate we will use in \mathbb{T}^{2}.

Now we define a C^{∞} function $\alpha: \mathbb{T}^{2} \rightarrow[0,1]$, such that

$$
\alpha(x)= \begin{cases}0, & x \in[-1,1]_{s} \times[-1,1]_{u} \subset U(p) \\ 1, & x \in \mathbb{T}^{2} \backslash[-3,3]_{s} \times[-3,3]_{u} \\ \in(0,1), & \text { otherwise }\end{cases}
$$

The function α prescribes the perturbation region on \mathbb{T}^{2}. And the next function γ shows the way of perturbations along fibers.

Let $\gamma: \mathbb{S}^{1}=[-1,1] /\{-1=1\} \rightarrow \mathbb{R}$ be a C^{∞} function, such that

$$
\gamma(t): \begin{cases}>0, & t \in[-1,-1+\tau) \cup(-\tau, \tau) \cup(1-\tau, 1], \\ =0, & t \in[-1+\tau,-\tau] \cup[\tau, 1-\tau] .\end{cases}
$$

Here, $\tau=\tau(\delta, r)<\delta / 2$ is determined by Lemma 2.1.
We define a C^{∞} vector field Y on \mathbb{T}^{3} by

$$
Y(x, t)=-\alpha(x) \gamma(t) \cdot \frac{\partial}{\partial t}, \quad \forall(x, t) \in \mathbb{T}^{3}=\mathbb{T}^{2} \times \mathbb{S}^{1}
$$

Figure 2. The perturbation made by Y_{ρ}.
For $\rho>0$, the time- ρ map Y_{ρ} satisfies the following properties (see Figure 2):

- $Y_{\rho}(x, t)=\left(x, \psi_{x}(t)\right)$, and $Y_{\rho}(x, t)=(x, t)$ for every $(x, t) \in[-1,1]_{s} \times$ $[-1,1]_{u} \times \mathbb{S}^{1}$.
- For $i=0,1, \psi_{x}(i) \leq i$ for every $x \in \mathbb{T}^{2}$. Precisely, for $i=0,1$,
$-\psi_{x}(i)=i$, for every $x \in[-1,1]_{s} \times[-1,1]_{u}$;
$-\psi_{x}(i)<i$, for every $x \in \mathbb{T}^{2} \backslash[-1,1]_{s} \times[-1,1]_{u}$.
- For every $(x, t) \in \mathbb{T}^{2} \times([-1+\tau,-\tau] \cup[\tau, 1-\tau])$, we have $Y_{\rho}(x, t)=(x, t)$.

Now the composition diffeomorphism $f=Y_{\rho} \circ f_{r}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is the diffeomorphism we promised in our main theorem.
Proposition 2.2. If ρ and r are small enough, then the diffeomorphism $f=Y_{\rho} \circ f_{r}$: $\mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ satisfies the following properties:
(1) f is a partially hyperbolic skew-product diffeomorphism:

$$
f(x, t)=\left(A x, \psi_{A x} \circ \varphi(t)\right), \quad \forall(x, t) \in \mathbb{T}^{3} .
$$

(2) When restricted in the fixed fiber $S_{p},\left.f\right|_{S_{p}}$ has two fixed points P_{0}, P_{1}, and is chain transitive.
(3) For $i=0,1, f\left(\mathbb{T}^{2} \times[i-\delta, i]\right) \subset \mathbb{T}^{2} \times[i-\delta+\tau, i]$.
(4) For $i=0,1, W^{u u}\left(P_{i}, f\right) \subset[i-\delta+\tau, i]$; $W^{s s}\left(P_{0}, f\right) \subset[0,1-\delta]$ and $W^{s s}\left(P_{1}, f\right) \subset[-1,-\delta]$.
(5) For $i=0,1, W^{u u}\left(P_{i}, f\right) \cap W^{s s}\left(P_{i}, f\right)=\left\{P_{i}\right\}$.

Proof. We prove these five properties one by one:
(1) From the definition of f, we have that for every $(x, t) \in \mathbb{T}^{3}$,
$f(x, t)=Y_{\rho} \circ X_{r} \circ(A \times \mathrm{Id})=Y_{\rho} \circ f_{r}(x, t)=Y_{\rho}(A x, \varphi(t))=\left(A x, \psi_{A x} \circ \varphi(t)\right)$.
Moreover, if ρ and r are small enough, f is a C^{∞} small perturbation of the partially hyperbolic diffeomorphism $A \times \mathrm{Id}$. Thus f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}.
(2) From its definition, the vector field Y is zero in a neighborhood of S_{p}, and hence Y_{ρ} is the identity map in a neighborhood of S_{p}. This implies $\left.f\right|_{S_{p}} \equiv$ $\left.f_{r}\right|_{S_{p}}$, which is chain transitive and has two fix points $P_{i}=(p, i) \in \mathbb{T}^{2} \times \mathbb{S}^{1}$ for $i=0,1$.
(3) Since we have $\varphi(i)=i$, for $i=0,1$, then $\psi_{A x} \circ \varphi(i)=\psi_{A x}(i) \leq i$ for every $x \in \mathbb{T}^{2}$.

For $t=-\delta$ or $t=1-\delta$, we have $\varphi(t)>t+\tau$. Since $\tau<\delta / 2$, and $Y_{\rho}(x, t)=(x, t)$ for every $(x, t) \in \mathbb{T}^{2} \times([-1+\tau,-\tau] \cup[\tau, 1-\tau])$, we have
$Y_{\rho}(x, t)=\left(x, \psi_{x}(t)\right)=(x, t), \quad \forall(x, t) \in \mathbb{T}^{2} \times\{-\delta+\tau, 1-\delta+\tau\}$.
Since ψ_{x} preserves the orientation, $\psi_{A x} \circ \varphi(t)>\psi_{A x}(t+\tau)=t+\tau$, for every $(x, t) \in \mathbb{T}^{2} \times\{-\delta, 1-\delta\}$.

Since both ψ_{x} and ϕ preserve the orientation, the conclusion follows.
(4) From the construction of ψ, we have that for $\mathrm{i}=0,1$,

$$
\psi_{A x} \circ \varphi(i)=i, \forall x \in\left[-\lambda^{-1}, \lambda^{-1}\right]_{s} \times[-\lambda, \lambda]_{u} .
$$

This implies
$W^{u u}\left(P_{i}, f\right) \cap\left(\left\{0_{s}\right\} \times[-1,1]_{u} \times \mathbb{S}^{1}\right)=\left\{0_{s}\right\} \times[-1,1]_{u} \times\{i\} \triangleq W_{l o c}^{u u}\left(P_{i}, f\right)$.
Since $W^{u u}\left(P_{i}, f\right)=\bigcup_{n>0} f^{n}\left(W_{l o c}^{u u}\left(P_{i}, f\right)\right)$, by item 3, we have $W^{u u}\left(P_{i}, f\right)$ $\subset[i-\delta+\tau, i]$.

Similarly,

$$
W^{s s}\left(P_{i}, f\right) \cap\left([-1,1]_{s} \times\left\{0_{u}\right\} \times \mathbb{S}^{1}\right)=[-1,1]_{s} \times\left\{0_{u}\right\} \times\{i\} \triangleq W_{l o c}^{s s}\left(P_{i}\right),
$$

and $W^{s s}\left(P_{i}, f\right)=\bigcup_{n>0} f^{-n}\left(W_{\text {loc }}^{s s}\left(P_{i}, f\right)\right)$. From item 3, we have

$$
f^{-1}\left(\mathbb{T}^{2} \times[0,1-\delta]\right) \subset[0,1-\delta]
$$

and $f^{-1}\left(\mathbb{T}^{2} \times[-1,-\delta]\right) \subset[-1,-\delta]$. Hence $W^{s s}\left(P_{0}, f\right) \subset[0,1-\delta]$ and $W^{s s}\left(P_{1}, f\right) \subset[-1,-\delta]$.
(5) By the construction of ψ,

$$
\psi_{A x} \circ \varphi(i)<i, \forall x \in \mathbb{T}^{2} \backslash\left[-\lambda^{-1}, \lambda^{-1}\right]_{s} \times[-\lambda, \lambda]_{u}
$$

We claim that

$$
W^{u u}\left(P_{i}, f\right) \cap\left(\mathbb{T}^{2} \times i\right)=\left\{0_{s}\right\} \times[-1,1]_{u} \times\{i\}
$$

In fact, the right hand side is clearly contained in the left hand side. On the other hand, take any point $(x, i) \in W^{u u}\left(P_{i}, f\right)$. Denote $f^{-n}(x, i)=$ $\left(x_{n}, t_{n}\right)$. Then for n large enough, $t_{n}=i$. Hence $t_{n}=i$ for all n. But this implies that $x_{n} \in\left[-\lambda^{-1}, \lambda^{-1}\right]_{s} \times[-\lambda, \lambda]_{u}$ for $n \geq 1$. Thus $x_{n} \in$ $\left\{0_{s}\right\} \times[-\lambda, \lambda]_{u}$ for $n \geq 1$. So, (x, i) is in the right hand side.

Similarly, we can show that

$$
W^{s s}\left(P_{i}, f\right) \cap\left(\mathbb{T}^{2} \times i\right)=\left[-\lambda^{-1}, \lambda^{-1}\right]_{s} \times\left\{0_{u}\right\} \times\{i\}
$$

Item 4 implies that $W^{u u}\left(P_{i}, f\right) \cap W^{s s}\left(P_{i}, f\right) \subset \mathbb{T}^{2} \times i$ and hence

$$
W^{u u}\left(P_{i}, f\right) \cap W^{s s}\left(P_{i}, f\right)=\left\{P_{i}\right\}
$$

3. Dynamical and geometrical properties of f

Now we can prove the main theorem from the following three lemmas (Lemmas 3.1, 3.2 (3.5).

Lemma 3.1. The diffeomorphism $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is chain transitive.
Proof. From the first and second properties of f in Proposition 2.2, we know that f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}, and thus the stable and unstable manifolds of the fixed fiber S_{p} are dense on \mathbb{T}^{3}. The density of $W^{u}\left(S_{p}\right)$ implies that every point in \mathbb{T}^{3} is chain attainable from some point in S_{p}; the density of $W^{s}\left(S_{p}\right)$ implies that every point in \mathbb{T}^{3} is chain attainable to a point in S_{p}. Since $\left.f\right|_{S_{p}}$ is chain transitive, every point in \mathbb{T}^{3} is chain attainable from itself, i.e., $\mathrm{CR}(f)=\mathbb{T}^{3}$, and f is chain transitive on \mathbb{T}^{3}.

Lemma 3.2. The diffeomorphism $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is accessible.
Proof. Since f is a partially hyperbolic skew-product diffeomorphism on \mathbb{T}^{3}, if f is not accessible, then from theorem 1.6 of [9], f has a compact $u s$-leaf. Here a $u s$-leaf is a complete 2 -dimensional submanifold which is tangent to $E^{s s} \oplus E^{u u}$ of f. It is a torus transverse to the \mathbb{S}^{1}-fiber of \mathbb{T}^{3}. Since the compact $u s$-leaf is saturated by $\mathcal{W}^{s s}$ and $\mathcal{W}^{u u}$, it intersects every \mathbb{S}^{1}-fiber of \mathbb{T}^{3}. Moreover, this $u s$-leaf must intersect every \mathbb{S}^{1}-fiber with only finitely many points since it is a compact and complete submanifold.

If f does not have any periodic $u s$-torus, then theorem 1.9 of [9] shows that f is semi-conjugate to A times an irrational rotation on \mathbb{S}^{1}, which implies f has no periodic points. This contradicts that P_{0} and P_{1} are two fixed points of f, and thus f must have a periodic compact $u s$-leaf $\mathbb{T}_{u s}$.

From the periodicity of $\mathbb{T}_{u s}$, we know that $\mathbb{T}_{u s} \cap S_{p}$ only contains P_{0} or P_{1}, and $f\left(\mathbb{T}_{u s}\right)=\mathbb{T}_{\text {us }}$. Assuming $P_{0} \in \mathbb{T}_{u s}$, then from Theorem 1.7 of [9], we have

$$
\mathbb{T}_{u s}=\overline{W^{s s}\left(P_{0}, f\right)}=\overline{W^{u u}\left(P_{0}, f\right)} .
$$

In particular, $W^{s s}\left(P_{0}, f\right)$ and $W^{u u}\left(P_{0}, f\right)$ have strong homoclinic intersections, which contradicts item 5 of Proposition 2.2 The same argument works for $P_{1} \in \mathbb{T}_{u s}$, and thus f must be accessible.

Proposition 3.3. Let $g: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be a partially hyperbolic skew-product diffeomorphism. If g preserves the orientation of center foliation, and has two disjoint g-invariant compact u-saturated sets, then g is not transitive. In particular, if g is transitive, it has only one g-invariant minimal u-saturated set.

Proof. Let Λ_{1} and Λ_{2} be two disjoint g-invariant compact u-saturated sets. Then for every point $x \in \mathbb{T}^{2}$ and every center fiber $S_{x}=\{x\} \times \mathbb{S}^{1} \subset \mathbb{T}^{3}, S_{x} \cap \Lambda_{i} \neq \emptyset$, for $i=1,2$.

Now we define a function $\Phi: \mathbb{T}^{3} \rightarrow \mathbb{R}$. For every $(x, t) \in \mathbb{T}^{3}=\mathbb{T}^{2} \times \mathbb{S}^{1}$, the value $\Phi(x, t)$ is defined as follows:

- If $(x, t) \in \Lambda_{1} \cup \Lambda_{2}$, then $\Phi(x, t)=0$.
- If $(x, t) \notin \Lambda_{1} \cup \Lambda_{2}$, following the natural orientations " $<$ " in \mathbb{S}^{1}-fibers, let $t_{1}<t<t_{2}$, such that $\left(\{x\} \times\left(t_{1}, t_{2}\right)\right) \cap\left(\Lambda_{1} \cup \Lambda_{2}\right)=\emptyset$, and $\left(x, t_{i}\right) \in \Lambda_{1} \cup \Lambda_{2}$, for $i=1,2$.
- If $\left(x, t_{1}\right) \in \Lambda_{1}$, and $\left(x, t_{2}\right) \in \Lambda_{2}$, then

$$
\Phi(x, t)=\left(t-t_{1}\right) \cdot\left(t_{2}-t\right)>0 .
$$

- If $\left(x, t_{1}\right) \in \Lambda_{2}$, and $\left(x, t_{2}\right) \in \Lambda_{1}$, then

$$
\Phi(x, t)=-\left(t-t_{1}\right) \cdot\left(t_{2}-t\right)<0 .
$$

- If $\left(x, t_{1}\right),\left(x, t_{2}\right) \in \Lambda_{1}$ or $\left(x, t_{1}\right),\left(x, t_{2}\right) \in \Lambda_{2}$, then

$$
\Phi(x, t)=0 .
$$

The function Φ is well defined, since $\Lambda_{1} \cap \Lambda_{2}=\emptyset$, and $\Lambda_{i} \cap S_{x} \neq \emptyset$ for $i=1,2$ and every $x \in \mathbb{T}^{2}$. Moreover, given a point $x \in \mathbb{T}^{2}, \Phi$ is continuous in S_{x}. Denote two sets

$$
U^{+}=\left\{(x, t) \in \mathbb{T}^{3}: \Phi(x, t)>0\right\} \quad \text { and } \quad U^{-}=\left\{(x, t) \in \mathbb{T}^{3}: \Phi(x, t)<0\right\}
$$

Since both Λ_{1} and Λ_{2} are g-invariant, and g preserves the orientation of center fibers, we can see that both U^{+}and U^{-}are g-invariant. So we only need to show that they are open sets, which will imply that g is not transitive.

From the definition of Φ, if $(x, t) \in \mathbb{T}^{3}$ with $\Phi(x, t)>0$, then there exists $t_{1}<t<t_{2}$, such that

$$
\left(x, t_{1}\right) \in \Lambda_{1},\left(x, t_{2}\right) \in \Lambda_{2} \quad \text { and } \quad \Phi(x, s)>0 \text { for every } s \in\left(t_{1}, t_{2}\right)
$$

Since Λ_{1} and Λ_{2} are compact and disjoint, there exists $\delta>0$, such that $t_{2}-t_{1} \geq \delta$. This implies for every $x \in \mathbb{T}^{2}$, every connected component of $S_{x} \cap U^{+}$has length $\geq \delta$. Denote by $k(x)$ the number of connected components of $S_{x} \cap U^{+}$and by $\left(a_{i}(x), b_{i}(x)\right), i=1,2, \cdots, k(x)$ the connected components of $S_{x} \cap U^{+}$, i.e.,

$$
S_{x} \cap U^{+}=\{x\} \times \bigcup_{i=1}^{k(x)}\left(a_{i}(x), b_{i}(x)\right),
$$

where $a_{i}(x) \in \Lambda_{1}, b_{i}(x) \in \Lambda_{2}$ for $i=1,2, \cdots, k(x)$.

Claim 3.4. $k: \mathbb{T}^{2} \rightarrow \mathbb{N}$ is a constant function, i.e., there exists $k_{0} \in \mathbb{N}$ such that

$$
k(x) \equiv k_{0}, \quad \forall x \in \mathbb{T}^{2}
$$

Moreover, $k_{0} \leq 2 / \delta$.
Proof of the claim. For every $x \in \mathbb{T}^{2}$ and every $s_{1}<s_{2}$, if $\left(x, s_{1}\right) \in \Lambda_{1}$ and $\left(x, s_{2}\right) \in$ Λ_{2}, then there must exist some point $s \in\left(s_{1}, s_{2}\right)$, such that $\Phi(x, s)>0$.

We will first show that the function k is upper semi-continuous, i.e., if $\lim _{n \rightarrow \infty} x_{n}$ $=x$, then $k(x) \geq \lim \sup _{n \rightarrow \infty} k\left(x_{n}\right)$. Actually, by taking subsequence if necessary, we can assume that

$$
S_{x_{n}} \cap U^{+}=\left\{x_{n}\right\} \times \bigcup_{i=1}^{l}\left(a_{i}\left(x_{n}\right), b_{i}\left(x_{n}\right)\right), \quad \text { for } l=\limsup _{n \rightarrow \infty} k\left(x_{n}\right),
$$

and

$$
\lim _{n \rightarrow \infty}\left(x_{n}, a_{i}\left(x_{n}\right)\right)=\left(x, a_{i}\right) \in S_{x} \cap \Lambda_{1}, \quad \lim _{n \rightarrow \infty}\left(x_{n}, b_{i}\left(x_{n}\right)\right)=\left(x, b_{i}\right) \in S_{x} \cap \Lambda_{2}
$$

This implies there exists some $c_{i} \in\left(a_{i}, b_{i}\right)$, such that $\Phi\left(x, c_{i}\right)>0$, for $i=1,2, \cdots, l$. Since $\Phi\left(x, a_{i}\right)=\Phi\left(x, b_{i}\right)=0, S_{x} \cap U^{+}$has at least l connected components, i.e., $k(x) \geq l$, which implies $k: \mathbb{T}^{2} \rightarrow \mathbb{N}$ is upper semi-continuous.

Assume that g is a skew-product diffeomorphism over a hyperbolic automorphism $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$. Then, for any $y \in W^{u}(x, A) \subset \mathbb{T}^{2}$, we have $k(y)=k(x)$ since both Λ_{1} and Λ_{2} are u-saturated. In fact, if $S_{x} \cap U^{+}=\{x\} \times \bigcup_{i=1}^{k(x)}\left(a_{i}(x), b_{i}(x)\right)$, then $h^{u}\left(a_{i}(x)\right) \in \Lambda_{1} \cap S_{y}$ and $h^{u}\left(b_{i}(x)\right) \in \Lambda_{2} \cap S_{y}$, where $h^{u}: S_{x} \rightarrow S_{y}$ is the holonomy map of the unstable foliation of g. We have $S_{y} \cap U^{+}=\{y\} \times$ $\bigcup_{i=1}^{k(x)}\left(h^{u}\left(a_{i}(x)\right), h^{u}\left(b_{i}(x)\right)\right)$, and thus $k(y)=k(x)$.

Since every connected component of $S_{x} \cap U^{+}$has length larger than δ, k is uniformly bounded by $2 / \delta$. So we can choose the point $z \in \mathbb{T}^{2}$, where k takes the maximal value k_{0} at z. Then, for very $w \in W^{u}(z, A) \subset \mathbb{T}^{2}, k(w)=k_{0}$. Since $W^{u}(z, A)$ is dense in \mathbb{T}^{2} and k is upper semi-continuous, we have $k(x) \equiv k_{0}$ for every $x \in \mathbb{T}^{2}$.

Now we will show the set U^{+}is open in \mathbb{T}^{3}. Suppose on the contrary that there exists a point $(x, t) \in \mathbb{T}^{3}$ with $\Phi(x, t)>0$, and a sequence of points $\left(x_{n}, t_{n}\right) \rightarrow(x, t)$ with $\Phi\left(x_{n}, t_{n}\right) \leq 0$. Denote that

$$
S_{x_{n}} \cap U^{+}=\left\{x_{n}\right\} \times \bigcup_{i=1}^{k_{0}}\left(a_{i}\left(x_{n}\right), b_{i}\left(x_{n}\right)\right)
$$

Since $\Phi\left(x_{n}, t_{n}\right) \leq 0$, we may assume $t_{n} \in\left[b_{j}\left(x_{n}\right), a_{j+1}\left(x_{n}\right)\right]$ for some $1 \leq j \leq k_{0}$ by taking subsequence when necessary.

By taking subsequence when necessary, we may assume that $\left(x_{n}, a_{i}\left(x_{n}\right)\right) \rightarrow$ $\left(x, a_{i}\right) \in \Lambda_{1}$ and $\left(x_{n}, b_{i}\left(x_{n}\right)\right) \rightarrow\left(x, b_{i}\right) \in \Lambda_{2}$. Moreover, we have $t \in\left[b_{j}, a_{j+1}\right]$. Since $\Phi(x, t)>0,\left(x, a_{i}\right) \in \Lambda_{1}$, and $\left(x, b_{i}\right) \in \Lambda_{2}$, we must have $t \in\left(b_{j}, a_{j+1}\right)$.

Now we have $\left(x, a_{i}\right) \in \Lambda_{1}$ and $\left(x, b_{i}\right) \in \Lambda_{2}$, which implies there exists some $c_{i} \in$ $\left(a_{i}, b_{i}\right)$, such that $\Phi\left(x, c_{i}\right)>0$, for $i=1,2, \cdots, k_{0}$. Moreover, we have $\Phi(x, t)>0$ for $t \in\left(b_{j}, a_{j+1}\right)$. However, $\Phi\left(x, a_{i}\right)=\Phi\left(x, b_{i}\right)=0$, which implies $S_{x} \cap U^{+}$has at least $k_{0}+1$ connected components. This is a contradiction to our claim. Thus U^{+} is open in \mathbb{T}^{3}.

The same argument can show that U^{-}is open in \mathbb{T}^{3}. Since U^{+}and U^{-}are both non-empty g-invariant open sets and disjoint, g is not transitive.

Lemma 3.5. The diffeomorphism $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is not transitive.
Proof. By Proposition 3.3, we only need to show that f has two disjoint compact invariant u-saturated sets. Denote

$$
\Lambda_{0}=\overline{W^{u u}\left(P_{0}, f\right)} \quad \text { and } \quad \Lambda_{1}=\overline{W^{u u}\left(P_{1}, f\right)}
$$

Since both P_{0} and P_{1} are fixed points, $W^{u u}\left(P_{0}, f\right)$ and $W^{u u}\left(P_{1}, f\right)$ are two invariant u-saturated sets. This implies Λ_{0} and Λ_{1} are two compact f-invariant u-saturated sets.

According to item 4 of Proposition 2.2,

$$
\Lambda_{i}=\overline{W^{u u}\left(P_{i}, f\right)} \subset[i-\delta+\tau, i], \quad \text { for } i=0,1
$$

Hence, we have $\Lambda_{0} \cap \Lambda_{1}=\emptyset$. This finishes the proof of this lemma.

References

[1] Flavio Abdenur, Christian Bonatti, and Lorenzo J. Díaz, Non-wandering sets with nonempty interiors, Nonlinearity 17 (2004), no. 1, 175-191, DOI 10.1088/0951-7715/17/1/011. MR2023438
[2] Flavio Abdenur and Sylvain Crovisier, Transitivity and topological mixing for C^{1} diffeomorphisms, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 1-16, DOI 10.1007/978-3-642-28821-0_1. MR2975581
[3] Christian Bonatti and Sylvain Crovisier, Récurrence et généricité (French, with English and French summaries), Invent. Math. 158 (2004), no. 1, 33-104, DOI 10.1007/s00222-004-0368-1. MR2090361
[4] Christian Bonatti, Lorenzo J. Díaz, and Marcelo Viana, Dynamics beyond uniform hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005. A global geometric and probabilistic perspective; Mathematical Physics, III. MR 2105774
[5] M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature (Russian), Funkcional. Anal. i Priložen. 9 (1975), no. 1, 9-19. MR 0370660
[6] Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, and Raúl Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 75-88, DOI 10.3934/dcds.2008.22.75. MR2410948
[7] Keith Burns and Amie Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2) $\mathbf{1 7 1}$ (2010), no. 1, 451-489, DOI 10.4007/annals.2010.171.451. MR2630044
[8] Dmitry Dolgopyat and Amie Wilkinson, Stable accessibility is C^{1} dense, Astérisque 287 (2003), xvii, 33-60. Geometric methods in dynamics. II. MR2039999
[9] Andy Hammerlindl, Ergodic components of partially hyperbolic systems, Comment. Math. Helv. 92 (2017), no. 1, 131-184, DOI 10.4171/CMH/409. MR3615038
[10] A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. Lond. Math. Soc. (2) 89 (2014), no. 3, 853-875, DOI 10.1112/jlms/jdu013. MR3217653
[11] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with $1 D$-center bundle, Invent. Math. 172 (2008), no. 2, 353-381, DOI 10.1007/s00222-007-0100-z. MR2390288
[12] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR0501173
[13] Rafael Potrie, Partial hyperbolicity and foliations in \mathbb{T}^{3}, J. Mod. Dyn. 9 (2015), 81-121, DOI 10.3934/jmd.2015.9.81. MR 3395262
[14] R. Ures and C. H. Vasquez, On the robustness of intermingled basins, arXiv:1503.07155v2.

School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

E-mail address: gansb@pku.edu.cn
School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

E-mail address: shiyi@math.pku.edu.cn

[^0]: Received by the editors December 30, 2016 and, in revised form, February 19, 2017.
 2010 Mathematics Subject Classification. Primary 37C20, 37D30.

