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THE CENTRALIZER OF Cr-GENERIC DIFFEOMORPHISMS

AT HYPERBOLIC BASIC SETS IS TRIVIAL
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(Communicated by Nimish Shah)

Abstract. In the late nineties, Smale proposed a list of problems for the next
century, and, among these, it was conjectured that for every r ≥ 1 a Cr-generic
diffeomorphism has trivial centralizer. Our contribution here is to prove the
triviality of Cr-centralizers on hyperbolic basic sets. In particular, Cr-generic

transitive Anosov diffeomorphisms have a trivial C1-centralizer. These results
follow from a more general criterium for expansive homeomorphisms with the
gluing orbit property. We also construct a linear Anosov diffeomorphism on T3

with discrete, non-trivial centralizer and with elements that are not roots. Fi-
nally, we prove that all elements in the centralizer of an Anosov diffeomorphism
preserve some of its maximal entropy measures, and use this to characterize
the centralizer of linear Anosov diffeomorphisms on tori.

1. Introduction and statement of the main results

Introduction. In the late nineties Smale proposed a list of problems for the 21st

century, and, among them, it is asked how typical are diffeomorphisms with trivial
centralizer [30]? The centralizer Zr(f) of a Cr-diffeomorphism f , defined as the
set of Cr-diffeomorphisms that commute with f , contains much information about
possible symmetries of the dynamics. For instance, it may be used to determine
when a diffeomorphism embeds as a time-1 map of a flow, as done by Palis [18],
or to study the existence of smooth conjugacies for topologically conjugate cir-
cle diffeomorphisms, a problem initiated by Herman in [13]. Thus, the problems
and conjectures established by Smale have a strong motivation from the interplay
between dynamical systems and the algebraic properties of the linear models for
hyperbolic automorphisms. Important contributions to the conjecture have been
given since the seventies. In [32], Walters proved that the C0-centralizer of expan-
sive dynamics is discrete. Anderson [1] proved that for a C∞-open and dense set
of Morse-Smale diffeomorphisms the centralizer is also discrete. Kopell [14] stud-
ied the triviality of the centralizer of Cr circle diffeomorphisms (r ≥ 2) and linear
transformations. Palis and Yoccoz proved Smale’s conjecture for Axiom A diffeo-
morphisms with the strong transversality condition in the C∞ topology [20,21]. In
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the real analytic setting, the first author proved that diffeomorphisms with triv-
ial centralizer contain a residual subset of Cω Axiom A diffeomorphisms with the
strong transversality condition [24]. More recently, Bonatti, Crovisier and Wilkin-
son [7] proved that C1-generic diffeomorphisms have trivial centralizer, providing a
solution of Smale’s conjecture on the space of C1-diffeomorphisms. In that paper,
the authors introduced a notion of unbounded distortion and show that it is C1-
generic and use it to prove that C1-generic diffeomorphisms have trivial centralizer.
We also refer to [8, 15] and references therein for some partial answers to Smale’s
conjecture in the context of hyperbolic flows and singular-hyperbolic flows.

The problem of the triviality of the centralizer in more regular topologies is still
very much an open question. A classical strategy for obtaining discreteness for Cr-
diffeomorphisms (r > 1) is to use linearization at some hyperbolic periodic orbit and
to reduce the problem of the centralizer back to the analysis of algebraic ingredients.
The drawback of this strategy is that Cr-linearization is only guaranteed once
non-resonance conditions are satisfied by the eigenvalues of the derivative at that
periodic point and provided the diffeomorphism is sufficiently smooth (the required
smoothness is given explicitly from the non-resonance conditions of the eigenvalues
and, for that reason, C∞-smoothness is assumed). Indeed, there exists a C∞ open
and dense subset of Anosov diffeomorphisms on tori and a C∞ open and dense
subset of Axiom A diffeomorphisms with strong transversality which have trivial
centralizer (see [20,21] respectively). The previous results were extended by the first
author in the case of surfaces, and if 2 ≤ r ≤ ∞, there exists a Cr-open and dense
subset of Axiom A diffeomorphisms with the no cycles condition whose elements
have trivial centralizer [11]. Later, Fisher [12] proved that the elements of a Cr

(2 ≤ r ≤ ∞) open and dense set of diffeomorphisms that exhibit a codimension-
one hyperbolic and non-Anosov attractor have trivial centralizer on their basin of
attraction. Hence, the triviality of the centralizer at hyperbolic basic pieces is well
known both in the case of C∞ diffeomorphisms and in the case of codimension-one
hyperbolic attractors.

Our main purpose in this paper is to contribute to the description of the cen-
tralizer of Cr-diffeomorphisms at hyperbolic basic pieces (r ≥ 1) removing both
the C∞-smoothness and codimension-one assumptions, establishing the triviality
of the centralizer in the case of Cr-generic diffeomorphisms that exhibit non-trivial
hyperbolic basic pieces (2 ≤ r < ∞). First, we prove a criterium for an element
in the C0-centralizer of expansive homeomorphisms with the periodic gluing orbit
property to be a power of it (see Theorem A below). Then, we prove that the as-
sumptions in the criterium are satisfied by C1 diffeomorphisms in the centralizer of
Cr-generic diffeomorphisms and, consequently, Cr-generic hyperbolic basic pieces
(including transitive Anosov diffeomorphisms) have trivial centralizer (cf. Corol-
laries A and B). As Anosov diffeomorphisms may have non-trivial centralizers and
may have positive entropy (even Anosov) diffeomorphisms in their centralizer, then
it is important to provide a general characterization for elements in the centralizer
of Anosov diffeomorphisms. For that purpose, we prove in Theorem B that if the
measure theoretical entropy function of a finite entropy homeomorphism is lower
semi-continuous, then all elements of the centralizer preserve some of its measures of
maximal entropy. In consequence, the centralizer of Anosov automorphisms on tori
is formed by volume preserving diffeomorphisms (Corollary D) and any C2-partially
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hyperbolic diffeomorphism in its centralizer has positive entropy (cf. Corollary F).
Finally, we finish this article with some questions.

Preliminaries. Let f ∈ Diff r(M), r ≥ 1. Let Per(f) denote the set of periodic
points for f and Ω(f) ⊂ M denote the non-wandering set of f . An f -invariant set Λ

is transitive if there exists x ∈ Λ so thatOf (x) := {fn(x) : n ∈ N} = Λ. We say that
a compact f -invariant set Λ ⊂ M is a hyperbolic set for f if it admits a hyperbolic
splitting: there is a Df -invariant splitting TΛM = Es ⊕ Eu and constants C > 0
and λ ∈ (0, 1) so that ‖Dfn(x) |Es

x
‖ ≤ Cλn and ‖(Dfn(x) |Eu

x
)−1‖ ≤ Cλn for

every x ∈ Λ and n ≥ 1. A periodic point p ∈ Per(f) is hyperbolic if its orbit is a
hyperbolic set. A compact f -invariant set Λ is called locally maximal if there exists
an open neighborhood U ⊂ M of Λ such that Λ =

⋂
n∈Z

fn(U). An f -invariant
set Λ ⊂ M is called a hyperbolic basic set for f if it is a transitive locally maximal
hyperbolic set.

We say that f ∈ Diff r(M), r ≥ 1, is Axiom A if (i) Per(f) = Ω(f) and (ii) Ω(f) is
a uniformly hyperbolic set. Clearly all periodic points of Axiom A diffeomorphisms
are hyperbolic. We say that f is an Anosov diffeomorphism if the whole manifold M
is a hyperbolic set for f . One should mention that not all manifolds admit Anosov
diffeomorphisms. It follows from the spectral decomposition theorem that for any
Axiom A diffeomorphism f there are finitely many pairwise disjoint hyperbolic
basic sets (Λi)i=1,...,k so that Ω(f) = Λ1 ∪ Λ2 ∪ · · · ∪ Λk. We refer the reader e.g.
to [29] for more details.

Given f ∈ Diff r(M), r ∈ N∪{∞} and 0 ≤ k ≤ r, the Ck-centralizer for f is the

subgroup of Diffk(M) defined as

Zk(f) = {g ∈ Diffk(M) : g ◦ f = f ◦ g},
where Diff0(M) stands for the space Homeo(M) of homeomorphisms on M . For

every 1 ≤ k ≤ n, it is clear that Zk(f) is a subgroup of (Diffk(M), ◦) which always
contains the subgroup {fn : n ∈ Z}. Clearly, Z0(f) ⊃ Z1(f) ⊃ Z2(f) ⊃ · · · ⊃
Zr(f) ⊃ {fn : n ∈ Z}, and we say that f ∈ Diff r(M) has trivial Ck-centralizer
if Zk(f) = {fn : n ∈ Z}. For simplicity, will say that f ∈ Diff r(M) has trivial
centralizer if its Cr-centralizer is trivial. Note that the C0-triviality of the C0-
centralizer of f ∈ Diff r(M), r ≥ 1, implies the triviality of Zk(f) for all 1 ≤ k ≤ r.

We now recall some ingredients from the thermodynamic formalism. Let M(M)
denote the space of Borelian probability measures on M , endowed with the weak∗

topology. The space of f -invariant probability measures Mf (M) ⊂ M(M) is a
compact subset, and for any ν ∈ Mf (M) the entropy of ν is defined as hν(f) =
sup{hν(f,P) : P is a finite partition inM}, where

hν(f,P) = inf
n≥1

1

n
H(

n−1∨
j=0

f−j(P)) and H(P) =
∑
P∈P

−μ(P ) logμ(P ).

An f -invariant probability measure μ is called an equilibrium state for f with respect
to a continuous potential φ : M → R if it attains the supremum in the variational
principle for the topological pressure

(1.1) Ptop(f, φ) = sup
ν∈Mf (M)

{
hν(f) +

∫
ϕdν

}
.

In the case that φ ≡ 0 the previous expression becomes the variational principle
for the topological entropy, and any measure that attains the supremum is called a
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maximal entropy measure. In the case that Λ is a hyperbolic basic set for f it is well
known that for every Hölder continuous potential φ there exists a unique equilibrium
state for f |Λ with respect to φ. We refer the reader to Bowen’s monograph [6] for
more details.

Statement of the main results. This section is devoted to the statement of our
main results. Our first main result is inspired by [15] and provides a criterium
for the triviality of the C0-centralizer for expansive homeomorphisms on compact
metric spaces. We need two preliminary notions that we now recall. Recall that
a homeomorphism f is expansive if there exists ε > 0 so that for any x, y ∈ M
there exists n ∈ Z such that d(fn(x), fn(y)) > ε. Any such constant ε is called an
expansivity constant for f .

Given a compact metric space Λ and a homeomorphism f ∈ Homeo(Λ), we
say that f has the periodic gluing orbit property if for any ε > 0 there exists
K = K(ε) > 0 such that for any points x0, x1, . . . , xk ∈ Λ and positive integers
n0, n1, . . . , nk ≥ 1 there are positive integers p0, p1, . . . , pk−1, pk ≤ K(ε) and x ∈ Λ

so that d(fk(x), fk(x0)) < ε for all 1 ≤ k ≤ n0, d(f
k+

∑i−1
j=0(pj+nj)(x), fk(xi)) < ε

for all 1 ≤ k ≤ ni and 1 ≤ i ≤ k, and f
∑k

j=0(pj+nj)(x) = x. This notion is weaker
than specification and holds e.g. for minimal isometries on tori and transitive
uniformly hyperbolic dynamics. In fact, the periodic gluing orbit property implies
strong transitivity and denseness of periodic orbits. Moreover, this property holds
for homeomorphisms with the periodic shadowing property on each chain recurrence
class of the non-wandering set. We refer the reader to [3–5, 31] for more details.

Finally, given homeomorphisms f, h : M → M , we say that h preserves the
periodic orbits of f if h(Of (x)) = Of (x) for every x ∈ Per(f). In other words, for

each x ∈ Per(f) there exists n(x) ∈ Z so that h(x) = fn(x)(x). We are now in a
position to state our first main result.

Theorem A. Let Λ be a compact metric space and let f : Λ → Λ be an expansive
homeomorphism. Assume that f satisfies the periodic gluing orbit property. If
h ∈ Z0(f) preserves periodic orbits of f , then h = fk for some k ∈ Z.

In what follows we deduce some consequences. The first one, which is a con-
sequence of Theorem A together with Lemma 3.1, shows that the centralizer at
hyperbolic basic pieces is typically trivial.

Corollary A. Let 1 ≤ r ≤ ∞, f0 ∈ Diff r(M) and Λf0 ⊂ M be a hyperbolic basic
set for f0. Let U ⊂ Diff r(M) be an open neighborhood of f0 and let U ⊂ M be an
open set such that the analytic continuation of the hyperbolic basic set defined by

(1.2) U � f �→ Λf :=
⋂
n∈Z

fn(U)

is well defined. There exists a Cr-open neighborhood U of f and a residual subset
R ⊂ U so that Z1(g |Λg

) is trivial for every g ∈ R.

It follows from the previous corollary that Cr-generic Axiom A diffeomorphisms,
restricted to their non-wandering set, have trivial centralizer. One should also note
that the first author constructed an open set of transitive Anosov diffeomorphisms
on T

2 with a non-trivial C0-centralizer [26], and consequently Corollary A is no
longer true when considering the C0-centralizer. Thus, there exists an element in
the centralizer that permutes periodic orbits (of the same period). In what follows
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we are also interested in the Cr-centralizer of Anosov diffeomorphisms, r ≥ 1. By
structural stability, the set Ar(M) of transitive Anosov diffeomorphisms is an open
set in Diff r(M), r ≥ 1. Among the classes of transitive diffeomorphisms we should
refer to the set Ar

m(M) of volume preserving Anosov diffeomorphisms.

Corollary B. Let M be a compact Riemannian manifold that supports Anosov
diffeomorphisms and 1 ≤ r ≤ ∞. There are Cr-residual subsets R1 ⊂ Ar(M)
and R2 ⊂ Ar

m(M) of Anosov diffeomorphisms so that the C1-centralizer of every
f ∈ Ri is trivial, i = 1, 2.

We observe that the previous result implies an explosion of differentiability. In-
deed, given 1 ≤ r ≤ ∞ any C1 diffeomorphism that commutes with a Cr-generic
Anosov diffeomorphism is itself Cr-smooth. As previously mentioned, whenever
r = 1 and r = ∞ the previous result is a direct consequence of [7] and [20], re-
spectively. For intermediate regularity 1 < r < ∞, in order to use the criterium
established by Theorem A we avoid a countable number of conditions (each of
which determines a closed set with empty interior in Diff r(M)). We now observe
that the centralizer of a linear Anosov diffeomorphism may have rationally indepen-
dent Anosov diffeomorphisms. Indeed, there exists a linear Anosov automorphism
f on T3 whose C∞-centralizer is Z(f) � Z2 × Z2 (hence it is discrete and non-
trivial) and contains an Anosov diffeomorphism h that does not satisfy any of the
equations hn = fm for m,n ∈ Z \ {0} (see e.g. [22]). Such an example does not
belong to the residual subsets described in Corollary A.

The main purpose now is to describe the elements in the centralizer of every
Anosov diffeomorphism on tori. In what follows we discuss the entropy of common
invariant measures.

Theorem B. Let M be a compact metric space and assume that f ∈ Homeo(M)
have finite topological entropy. If the entropy map h : Mf (M) → R+ given by
μ �→ hμ(f) is upper semicontinuous, then every g ∈ Z0(f) preserves a maximal
entropy measure of f . In addition, if Z0(f) is finitely generated, then there exists
a maximal entropy measure that is preserved by all elements in Z0(f).

It is well known that the measure theoretical entropy function of expansive home-
omorphisms, including Anosov diffeomorphisms, is upper semicontinuous (see e.g.
[33]). Thus the following is a direct consequence of Theorem B:

Corollary C. Assume that f ∈ Diff 1(M) is a transitive Anosov diffeomorphism.
Then every g ∈ Z0(f) preserves all the equilibrium states of f associated to Hölder
continuous potentials. In particular, the unique maximal entropy measure for f is
preserved by all g ∈ Z0(f) and, consequently, htop(f) = supμ∈Mf (M)∩M1(g) hμ(f).

The previous result should be compared with [28]: if f, g ∈ Homeo(M) are com-
muting homeomorphisms, htop(f) > 0 and g is expansive, then htop(g) > 0. In the
case of linear Anosov automorphisms the maximal entropy measure coincides with
the Lebesgue measure. Therefore, we deduce that all diffeomorphisms commuting
with volume preserving Anosov diffeomorphisms are themselves volume preserving.
More precisely:

Corollary D. Assume that f = fA is a linear Anosov automorphism on Tn. Then,
for every r ≥ 1,

Zr
m(f) := Zr(f) ∩Diff r

m(M) = Zr(f).
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Every Anosov diffeomorphism f on Tn is topologically conjugated to a linear
Anosov automorphism fA induced by a hyperbolic matrix A ∈ GL(n,Z) with
| detA| = 1 (cf. [17]). Clearly fA is volume preserving and the Lebesgue mea-
sure is the unique maximal entropy measure. Moreover, it is not hard to check that
the C0-centralizer for f is homeomorphic to the centralizer of fA (see e.g. [27, The-
orem 2]). Now, we relate our results to the ones due to Katok [16] on the centralizer
of diffeomorphisms preserving an invariant measure. For every n ≥ 2 there exists
a unique full supported maximal entropy measure for an Anosov diffeomorphism f
on Tn. Hence, the following is a direct consequence of Corollary 3.1 and Theorem
4.1 in [16]:

Corollary E. Let f : Tn → Tn be a linear Anosov diffeomorphism, n ≥ 2. The
following hold:

(1) if n = 2 and g ∈ Z1(f), then there are k, � ∈ Z so that fkg� = id; and
(2) if n = 3 and g, h ∈ Z1(f), then there are k, �,m ∈ Z so that fkg�hm = id.

Relations of the form fkg�hm = id are often associated to the existence of roots
on the centralizer (e.g. if g2 = f , then g is a root of f , and if h5 = id, then h
is a root of the identity), and to remove them constitutes an important step for
establishing the trivial centralizer (see for instance [20]). Plykin’s example (see [22])
implies that Corollary E (1) above is no longer true for Anosov diffeomorphisms on
T
3. It also implies that considering two elements in the centralizer at Corollary E

(2) is optimal: there exist commuting Anosov C∞ diffeomorphisms f and g such
that fkg� �= id for all k, � ∈ Z.

Finally, we discuss some rigidity phenomenon relating elements in the centralizer
with their topological entropy. First we observe the following:

Proposition A. If fA : T2 → T2 is a linear Anosov diffeomorphism and g ∈
Z0(fA) has positive entropy, then g is a root of an Anosov diffeomorphism.

Our next result concerns the entropy of partially hyperbolic diffeomorphisms
in the centralizer of an Anosov diffeomorphism. We say that g ∈ Diff 1(M) is
partially hyperbolic if there exists a Dg-invariant splitting TM = Eu ⊕ Ec and
constants C > 0 and λ ∈ (0, 1) so that ‖(Dfn(x) |Eu

x
)−1‖ ≤ Cλn and

‖(Dfn(x) |Eu
x
)−1‖ ‖(Dfn(x) |Ec

x
‖ ≤ Cλn for every x ∈ M and every n ≥ 1.

While Corollary C asserts that measures of maximal entropy are preserved by any
element in the centralizer of a transitive Anosov diffeomorphism, it is not clear how
to compute their entropy. The following result shows that all partial hyperbolic dif-
feomorphisms commuting with an Anosov diffeomorphism have positive topological
entropy. More precisely:

Corollary F. If 1 ≤ r ≤ ∞ and f ∈ Diff 1(Tn) is a linear Anosov diffeomorphism,
then every g ∈ Z2(f) is volume preserving and htop(g) ≥

∫ ∑
i λi(g, x)

+ dLeb(x)
where

∑
i λi(g, ·)+ denotes the sum of positive Lyapunov exponents of g with respect

to Lebesgue. In particular, if g ∈ Z2(f) is partially hyperbolic, then htop(g) > 0.

2. C0
-trivial centralizers

In what follows we will prove Theorem A, whose proof is inspired by [15]. Let
Λ be a compact metric space and let f : Λ → Λ be an expansive homeomorphism
satisfying the periodic gluing orbit property and let h ∈ Z0(f) be fixed. Assume
throughout that h ∈ Z0(f) preserves the periodic orbits of f .
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Lemma 2.1. For every ε > 0 there exists a periodic point q ∈ Per(f) whose orbit

is ε-dense in Λ. In particular Per(f) = Λ.

Proof. The proof is a direct consequence of the periodic gluing orbit property.
Indeed, by compactness of Λ, for every ε > 0 there exists a periodic point that is
ε-dense. Indeed, given ε > 0 pick any finite set {x1, x2, . . . , xk} ⊂ Λ that is ε/2-
dense in Λ and takes ni = 1 for every 1 ≤ i ≤ k. The periodic gluing orbit property
assures the existence of a positive integer K = K( ε2 ) ≥ 1 of positive integers
p1, . . . , pk ≤ K and of a periodic point q, of period at most (1 + K)k, so that

d(q, x1) < ε, d(f
∑i−1

j=0(pj+1)(q), xi) < ε for all 2 ≤ i ≤ k, and f
∑k

j=0(pj+1)(q) = q.
In consequence Of (q) is ε-dense in Λ. Since ε > 0 was chosen arbitrary this also
proves the second claim in the lemma. �

We proceed to prove that h = fk for some k ∈ Z. As h preserves periodic

orbits, given p ∈ Per(f) there exists a unique n(p) ∈ Z ∩ [−π(p)
2 , π(p)

2 ] so that

h(p) = fn(p)(p). Throughout, let n : Per(f) → Z be as defined above and note that
n(q) = n(f j(q)) for every q ∈ Per(f) and 0 ≤ j ≤ π(q). We first prove that if n(·)
is bounded, then the theorem follows.

Lemma 2.2. If n(·) : Per(f) → Z is bounded, then there exists k ∈ Z so that
h = fk.

Proof. Assume there exists N0 ≥ 1 so that |n(p)| ≤ N0 for every p ∈ Per(f). Then
it makes sense to consider the decomposition

Per(f) =
⊔

|j|≤N0

{
p ∈ Per(f |Λ) : n(p) = j

}
.

By Lemma 2.1, for every � ≥ 1 there exists a periodic point p� ∈ Per(f) that is
1
� -dense in Λ. Using the previous decomposition on the space of periodic points and

the pigeonhole principle, there exists k ∈ {−N0, . . . , N0} so that the set Pk :=
{
p ∈

Per(f) : n(p) = k
}
contains infinitely many periodic points of the family (p�)�≥1.

Hence Pk is dense in Λ and h |Pk
= fk. This implies that h = fk and proves the

lemma. �
The remainder of the proof is to assure that the hypothesis of the previous lemma

is satisfied. We need the following estimate on n(·).
Lemma 2.3. Given p ∈ Per(f) of prime period π(p) ≥ 1 there exists η = ηp > 0
(depending on p, f and h) so that for every q ∈ Per(f)∩B(p, η) either n(q) = n(p)

or |n(q)| > π(p)
2 .

Proof. Given p ∈ Per(f) pick ζ > 0 small enough such that the collection of balls
{B(f j(p), ζ)}j=0,...,π(p)−1 is pairwise disjoint and

(2.1) fk(B(f j(p), ζ)) ∩
( ⋃

s �=j+k

B(fs(p), ζ)
)
= ∅

for every j, k ∈ {0, . . . , π(p) − 1}. Clearly, the homeomorphism h̃ := h ◦ f−n(p)

belongs to Z0(f) and h̃(p) = p. Using that h̃ is uniformly continuous, there exists

0 < η < ζ/2 so that d(q, p) < η implies d(h̃(q), h̃(p)) = d(fn(q)−n(p)(q), p) < ζ
2 .

Since q and h̃(q) = fn(q)−n(p)(q) belong to B(p, η) and h preserves the periodic

orbits of f (hence the same holds for h̃) we conclude that either h̃(q) = q or
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h̃(q) ∈ Of (q) \ {q}. These correspond to the cases that n(q) = n(p) or, using (2.1),
that |n(q)−n(p)| ≥ π(p), respectively. This proves the dichotomy that n(q) = n(p)
or |n(q)| ≥ π(p)/2 as claimed in the lemma. �

Theorem A will follow as a consequence of Lemma 2.2 together with the following
proposition.

Proposition 2.1. n(·) : Per(f) → Z is bounded.

Proof. Assume by contradiction that n(·) : Per(f) → Z is unbounded. As f is
expansive let ε > 0 be an expansivity constant for f . Given p1, p2 ∈ Per(f) we
have that h(Of (pi)) = Of (pi) (i = 1, 2). Hence, diminishing ε > 0 if necessary, we
can assume the ε-neighborhood Vi of the orbit Of (pi) (i = 1, 2) to satisfy

(2.2) distH(V1 ∪ h(V1) ∪ h−1(V1), V2 ∪ h(V2) ∪ h−1(V2)) > 0,

where distH denotes the Hausdorff distance. Let K(ε) > 0 be given by the periodic
gluing orbit property.

Let p3 ∈ Per(f) such that |n(p3)| > 2K(ε); such a point does exist because n(·)
is unbounded. By definition of n(·) we get that 2K(ε) ≤ |n(p3)| ≤ π(p3)

2 .
Since ε is assumed to be an expansivity constant for f we conclude that the

diameter of the dynamic ball

B(p3, k, ε) := {x ∈ M : d(f j(x), f j(p3)) < ε for every − k ≤ j ≤ k}

tends to zero as k → ∞. Let η = ηp3
> 0 be given by Lemma 2.3 and k3 ≥ 1

be such that diam(B(p3, k3, ε)) < η. Given k ≥ 1 arbitrary, the periodic gluing
orbit property assures the existence of a periodic point p ∈ Per(f) and times 0 ≤
t1, t2, t3 ≤ K(ε) so that:

(1) d(f j(p), f j(p1)) ≤ ε for every 0 ≤ j ≤ kπ(p1),
(2) d(f j+t1+kπ(p1)(p), f j(p2)) ≤ ε for every 0 ≤ j ≤ π(p2),
(3) d(f j+t2+π(p2)+t1+kπ(p1)(p), f j(p3)) ≤ ε for every 0 ≤ j ≤ k3π(p3), and
(4) π(p) = t3 + π(p3) + t2 + π(p2) + t1 + kπ(p1).

In particular, one can choose k � 1 so that

kπ(p1) ≥ max{3K(ε) + π(p2) + k3π(p3), |n(p3)|}.

Since the orbit of p intersects the η-neighborhood of the orbit of p3 and n(f j(p3)) =
n(p3) for every 0 ≤ j ≤ π(p3) − 1, Lemma 2.3 assures that |n(p)| > K(ε). By
items (1) and (2), the point z = f t1+kπ(p1)(p) belongs to V2 and f−j(z) ∈ V1

for every t1 ≤ j ≤ kπ(p1). Moreover, by the choice of k ≥ 1, we have that
f−|n(z)|(z) = f−|n(p)|(z) ∈ V1. As either h(z) = f−|n(z)|(z) or h−1(z) = f−|n(z)|(z)
this leads to a contradiction with (2.2). Thus n(·) : Per(f) → Z is bounded, which
proves the proposition. �

3. Trivial centralizers on hyperbolic basic pieces

of Cr
-generic diffeomorphisms

Using that hyperbolic basic pieces admit analytic continuations g �→ Λg, Corol-
laries A and B on the triviality of the centralizer of Cr-generic diffeomorphisms on
hyperbolic basic pieces are consequences of Lemma 3.1 below. First we establish
some notation. Given a C1-diffeomorphism f on a compact Riemannian manifold
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M and p ∈ Per(f), let σ(Dfπ(p)(p)) ⊂ C denote the spectrum of the linear trans-
formation Dfπ(p)(p) : TpM → TpM , where π(p) ≥ 1 is the prime period of p. We
need the following:

Lemma 3.1. Let 1 ≤ r ≤ ∞, f0 ∈ Diff r(M) and Λf0 ⊂ M be a locally maximal
hyperbolic set for f0. Let U ⊂ Diff r(M) be an open neighborhood of f0 and let
U ⊂ M be an open set such that the analytic continuation of the hyperbolic basic
sets (1.2) is well defined. Then, there exists a Cr-residual subset R ⊂ U such that
for any f ∈ R the following holds: Dfπ(p)(p) is not linearly conjugated to Dfπ(q)(q)
for any periodic points p, q so that p /∈ Of (q).

Proof. The proof of this lemma is well known, and its proof relies on perturbations
at periodic points similar to the ones in the Kupka-Smale theorem. For that reason
we just sketch the underlying ideas, referring the reader e.g. to [19] for the details
on these classical perturbations in the case of the Kupka-Smale theorem. Given
r ≥ 1 and n ≥ 1 it is clear that the set Rn formed by all diffeomorphisms f ∈ U
so that all periodic points of period smaller than or equal to n are hyperbolic and
σ(Dfπ(p)(p)) ∩ σ(Dfπ(q)(q)) = ∅ forms a Cr-open subset of U . The proof that Rn

is Cr-dense relies on a finite number of disjointly supported perturbations of the
form

(3.1) (1 + χβ)f̃

in the neighborhood of periodic points of period smaller than or equal to n, where
f̃ corresponds to f in local coordinates, β is a smooth bump function and χ > 0
is small to guarantee that the perturbed diffeomorphism g ∈ Rn is indeed Cr-close
to f . Hence R =

⋂
n≥1 Rn is the desired residual subset of U . �

Remark 3.1. Given 1 ≤ r ≤ ∞, the classical methods used in the proof of the
Kupka-Smale theorem for Cr volume preserving diffeomorphisms (see e.g. Robin-
son [23, Lemma 14]) yield that Cr-generically the eigenvalues of different periodic
points have all distinct absolute values in the case that dimM ≥ 3. In the case
that dimM = 2 the previous strategy can be used to deduce a similar result among
the classes using perturbations C∞ close to the identity map obtained as a finite
composition of small rotations instead of homothetic perturbations in (3.1).

3.1. Proof of Corollary B. Fix 1 ≤ r ≤ ∞. We will prove the corollary in
the case of Anosov diffeomorphisms in Ar(M) (the proof for volume preserving
diffeomorphisms Ar

m(M) is completely analogous). Note that M is a hyperbolic
basic piece for any Anosov diffeomorphism in Ar(M) (due to transitivity).

Let D be a countable Cr-dense set of Anosov diffeomorphisms in Ar(M). By
structural stability, given f ∈ D the topological class of f contains a Cr open
neighborhood Uf ⊂ Diff r(M) of f . By Lemma 3.1, there exists a Cr-residual subset

Rf ⊂ Uf of Anosov diffeomorphisms so that Dgπ(p)(p) is not linearly conjugated to

Dgπ(q)(q) for any g ∈ Rf and any periodic points p, q ∈ Per(g) so that p /∈ Og(q).
We claim that every g ∈ Rf has trivial C1-centralizer. Indeed, given g ∈ Rf and

h ∈ Z1(g) it is enough to show that h preserves periodic orbits (cf. Theorem A).
But, using h ◦ gn = gn ◦ h for every n ∈ Z, if p is any periodic point of prime
period n = π(p), then Dgπ(p)(h(p)) = Dh(p) · Dgπ(p)(p) · [Dh(p)]−1. This shows
that Dgπ(p)(h(p)) and Dgπ(p)(p) are linearly conjugated. By the construction of
the residual subset Rf we conclude that h preserves the periodic orbits of g and,
consequently, the C1-centralizer of every g ∈ Rf is trivial. Then, R :=

⋃
f∈D Rf
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is a Cr-residual subset of Ar(M) that satisfies the requirements of the corollary.
This proves Corollary B.

4. Centralizers of Anosov diffeomorphisms

and positive entropy elements

4.1. Proof of Theorem B. Assume that the homeomorphism f ∈ Homeo(M) has
finite topological entropy and that the entropy map μ �→ hμ(f) is upper semicon-
tinuous: given invariant measures so that limn→∞ μn = μ (in the weak∗ topology)
it holds that lim supn→∞ hμn

(f) ≤ hμ(f). Under these assumptions f has at least
one equilibrium state for every continuous potential φ (see e.g. [33]).

Fix an arbitrary g ∈ Z0(f). As g ◦ f = f ◦ g then g∗ ◦ f∗ = f∗ ◦ g∗ where the
push-forward dynamics f∗ : M(M) → M(M) is given by (f∗η)(A) = η(f−1A) for
every Borelian A in M (and g∗ is defined similarly). Let μ be a maximal entropy
measure for f . It is not hard to check from the commutativity of f and g that
g∗μ is an f -invariant probability measure and that hg∗μ(f) = hμ(f). The first is
a direct consequence of the fact that g∗ ◦ f∗ = f∗ ◦ g∗. The second follows as, for
every finite partition P on M ,

hg∗μ(f,P) = inf
n≥1

1

n
Hg∗μ

( n−1∨
�=0

f−�(P)
)
= inf

n≥1

1

n
Hμ

(
g−1

( n−1∨
�=0

f−�(P)
))

= inf
n≥1

1

n
Hμ

( n−1∨
�=0

f−�(g−1(P))
)
= hμ( f, g

−j(P) ).

Since the partitions P (resp. g−j(P)) can be taken with arbitrarily small diameter
we conclude that hg∗μ(f) = hμ(f), as claimed. Recursively, hgj

∗μ
(f) = hμ(f) for

every j ≥ 0. As the measure theoretic entropy function is affine we get that the
f -invariant probability measures

(4.1) μn :=
1

n

n−1∑
j=0

gj∗μ

lie in the closed simplex S := {η ∈ Mf (M) : hη(f) = hμ(f)} for every n ≥ 1. Since
both f∗ and g∗ are continuous, if μ∞ is an accumulation point of the sequence
(μn)n, then μ∞ ∈ Mf (M) ∩ M1(g). Moreover, hμ∞(f) ≥ lim supn→∞ hμn

(f) =
hμ(f) by the upper semicontinuity of the entropy map Mf (M) � η �→ hη(f).
Consequently μ∞ is a maximal entropy measure for f that is preserved by both
f and g; consequently Htop(f) = supμ∈Mf (M)∩M1(g) hμ(f) = hμ∞(f). This proves
the first statement in the theorem.

Finally, if Z0(f) is finitely generated and G = {g1, . . . , gk} is a set of generators,
then the previous argument shows that every push-forward (gi+1)∗ preserves the
simplex S+ = {η ∈ Mf (M) : hη(f) = htop(f)} for every 1 ≤ i ≤ k. Then, if μ is
a maximal entropy measure for f , then any accumulation point of the probability
measures

1

nk

n−1∑
j1=0

· · ·
n−1∑
jk=0

(g1)
j1
∗ . . . (gk)

jk
∗ μ

is a maximal entropy measure for f that is preserved by all elements in Z0(f). This
finishes the proof of the theorem.
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Remark 4.1. If g ∈ Z0(f) and Eφ ⊂ Mf (M) denotes the space of equilibrium
states for f with respect to a continuous potential φ, similar computations as
above yield that any accumulation point μ∞ of the sequence of invariant prob-
ability measures defined by the Cesaro averages (4.1) (taking μ ∈ Eφ instead of a
maximal entropy measure) satisfies hμ∞(f) +

∫
φ dμ∞ ≥ hμ(f) +

∫
φ dμ∞, where∫

φ dμ∞ = limk→∞
1
nk

∑nk−1
j=0

∫
φ ◦ gj dμ for some subsequence (nk)k. Therefore,

one can only expect g∗(Eφ) ⊂ Eφ in the very special case that g∗ preserves the level
set {η ∈ Mf (M) :

∫
φ dη =

∫
φ dμ}. This is true in the case that φ is constant

when the equilibrium states are maximal entropy measures.

4.2. Proof of Proposition A. Assume that fA : T2 → T
2 is a linear Anosov

diffeomorphism and g ∈ Z0(fA) has positive entropy. The proof makes use of
this crucial fact: given the hyperbolic automorphism fA on T2 every element in
the C0-centralizer of fA that fixes the origin is linear [21, page 100]. Therefore,
for any g ∈ Z0(fA) there exists k ∈ N and B ∈ GL(2,Z) with | detB| = 1 so that
gk = fB. As fB is C∞ then the Pesin formula implies htop(fB) =

∑
i λ

+
i (fB) where

λ+
i (fB) denotes the positive Lyapunov exponents of fB with respect to Lebesgue.

Thus htop(fB) = k htop(g) > 0 if and only if there exists at least one eigenvalue
of B with absolute value larger than one. Since fB is volume preserving the latter
implies that B ∈ SL(2,Z) is a hyperbolic matrix and, equivalently, fB is an Anosov
automorphism. This proves the proposition.

Remark 4.2. The centralizer of linear Anosov diffeomorphisms on T2 can indeed
contain roots (e.g. fB ∈ Z(fA) where A,B ∈ SL(2,Z) are given by

A =

(
2 1
1 1

)
and B =

(
1 1
1 0

)

and verify B2 = A). Nevertheless, the existence of roots in the centralizer is rare for
more regular diffeomorphisms. Indeed, for every k ∈ N ∪ {∞} ∪ {ω} there exists a
Ck-open and dense set of positive entropy real analytic diffeomorphisms on surfaces
that have trivial centralizer [25].

5. Further questions

Given a Cr-diffeomorphism f ∈ Diffr(M) and 0 ≤ k ≤ r, the centralizer Zk(f) is

a subgroup of Diffk(M). In the case where there exists an open subset U ⊂ Diff r(M)
so that Zk(f) is finitely generated for every f ∈ U it makes sense to study the
continuity points of the map U � f �→ Nk(f) where Nk(f) ∈ N ∪ {∞} denotes
the minimum number of generators for Zk

0 (f). Some results can be deduced in

the case r = k = 1. Since C1-generically in Diff 1(M) the centralizer is trivial
(cf. [7]) there exists a residual subset R ⊂ Diff 1(M) so that R � f �→ N1(f)
is constant and equal to one. By [2], there exists an open subset of C1-Anosov
diffeomorphisms with trivial centralizer, hence formed by continuity points for the
function f �→ N1(f). The following questions remain open:

1. Given r ≥ 1, does the set of Cr-Anosov diffeomorphisms (resp. Cr Axiom A
diffeomorphisms with the no cycles condition) that have trivial centralizer form a
Cr open and dense set on the space of the space of Cr-Anosov diffeomorphisms
(resp. Cr-Axiom A diffeomorphisms with the no cycles condition)?
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2. If 1 ≤ k ≤ r, what are the continuity points of the functions Nk? Are all Anosov
diffeomorphisms points of (semi)continuity? Are there Anosov diffeomorphisms
whose centralizers are not finitely generated?

Related to the last question, one should mention that the centralizer of every
Anosov diffeomorphism on Tn is finitely generated (cf. [10]). Moreover, not all
Anosov diffeomorphisms are continuity points of the functions Nk, even if we re-
strict to linear hyperbolic diffeomorphisms. It is definitely interesting to discuss the
triviality of the centralizer with the set of entropies associated to each element of
the centralizer. Indeed, observe that the triviality of the centralizer Z0(f) seldom
implies that

(5.1) Hf := {htop(g) : g ∈ Z0(f)}
coincides with the arithmetic progression {nhtop(f) : n ∈ N0}. However, it is not
true that this condition implies the triviality of the centralizer, as can be easily
observed in the examples constructed by the first author in [26]. The following
question is suggested by this class of examples:

3. Assume that f : Tn → Tn is a C1-Anosov diffeomorphism and that Hf =
{nhtop(f) : n ∈ N0}. Is it true that all elements in the centralizer are either of the
form fk, k ∈ Z, roots of the identity or compositions of these?

Finally, we believe that positive entropy elements in the centralizer of an Anosov
diffeomorphism should have some rigidity condition. So, we ask:

4. Let f be an Anosov diffeomorphism on Tn (n ≥ 2). Are all positive entropy
elements in the C1-centralizer of f partially hyperbolic?
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des rotations (French), Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233. MR538680
[14] Nancy Kopell, Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math.,

Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 165–184.
MR0270396

[15] Douglas Jungreis and Michael Hirsch, Rigidity of centralizers of Anosov flows, Internat. J.
Math. 2 (1991), no. 1, 37–40, DOI 10.1142/S0129167X91000041. MR1082835

[16] Anatole Katok,Hyperbolic measures and commuting maps in low dimension, Discrete Contin.
Dynam. Systems 2 (1996), no. 3, 397–411, DOI 10.3934/dcds.1996.2.397. MR1395245

[17] Anthony Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96
(1974), 422–429, DOI 10.2307/2373551. MR0358865

[18] J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503–
505, DOI 10.1090/S0002-9904-1974-13470-1. MR0348795

[19] Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems: an intro-
duction (Portuguese), translated by A. K. Manning, Springer-Verlag, New York-Berlin, 1982.
MR669541

[20] J. Palis and J.-C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm.
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