
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 1, January 2018, Pages 69–83
http://dx.doi.org/10.1090/proc/13713

Article electronically published on August 31, 2017

A THEORY OF GALOIS DESCENT

FOR FINITE INSEPARABLE EXTENSIONS

GIULIA BATTISTON

(Communicated by Lev Borisov)

Abstract. We present a generalization of Galois descent to finite normal
field extension L/K, using the Heerema–Galois group Aut(L[X]/K[X]) where

L[X] = L[X]/(Xpe ) and e is the exponent of L over K.

If A → B is a ring homomorphism, the descent theory of B over A studies when
a B-algebraic object is defined over A, that is, comes by base change from an A-
algebraic object. In case A = K and B = L are fields and L/K is a finite Galois field
extension of Galois group G, it is a classical result (see for example [7, Sec. 14.20])
that algebraic objects over L with a suitable G-action are exactly those defined
over K. The goal of this article is to extend this result to finite normal possibly
nonseparable extensions L/K: of course G = Aut(L/K) will not do the job, as K is
not in general the fixed field of such a group. Instead, following the ideas of Heerema
(see [8]), we define the Heerema–Galois group to be HG(L/K) = Aut(L[X]/K[X])
where L[X] = L[X]/(Xpe

) (and similarly for K[X]) and where e is such that Lpe

is separable over K.
Our main result is then that if L/K is a finite normal modular (see Definition 1.1)

field extension, an algebraic object over L is defined over K if and only if its base
change to L[X] admits a suitable HG(L/K)-action (see Theorem 2.5, Lemma 2.7
and Theorem 2.11 for a more precise statement). As every finite normal extension
L/K is dominated by a finite normal modular extension L′/K (see [10, Thm. 6]),
by base change it is always possible to reduce oneself to the latter case.

There exist other possible approaches to a Galois-like theory for inseparable
extensions, that may be in principle used to describe the descent theory of L over
K. The most interesting alternative choices that have been proposed, over time, of
an object replacing the Galois group are three: the first one is given by considering
the group H(L/K) of (bounded rank) higher derivations on L relative to K (see
[4]), the second one concerns the Galois–Hopf algebra GHA(L/K) as described in
[1], and finally the third one uses the so-called automorphism scheme Aut(L/K)
(see [2]), which is a K-group scheme representing the functor T �→ AutT (L×K T )
for every K-scheme T or its truncated version Autt(L/K) as defined by Chase in
[3].

The main peculiar features of a Galois descent using HG(L/K) are two. The
first: it extends the classical Galois theory, namely, when e = 0 (that is L/K is sep-
arable Galois) we find exactly the Galois group and the theorems of Galois descent.
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The second one is that it acts via the automorphisms of the algebraic object we
are considering rather than the endomorphisms. This allows many classical tricks
of Galois descent to work in this more general setting, a good example being the
following: if X is defined as the stabilizer in GLn of some collection of sub-vector
spaces {Wi} of Ln and G is acting via automorphisms, for every σ ∈ G one has
that Xσ is the stabilizer of {σ(Wi)}. Hence the problem of descending X can be
reduced to the invariance of {Wi} under the action of G.

Finally, let me compare the choice of the Heerema–Galois with its possible alter-
natives: the group of higher derivations can be seen as a sub-group of the Heerema–
Galois group, but the latter is neater to handle and has a more algebraic flavor.
As for the descent theory in [1], given through the action of the Galois–Hopf al-
gebra GHA(L/K), it has the advantage that it does not need to base change the
L-algebraic objects to L[X] like we do. Their descent results moreover can be
red in the framework of faithfully flat descent theory, thanks to the fact that L
is a Spec(GHA(L/K)∗)-torsor and the duality between GHA(L/K)-module and
GHA(L/K)∗-comodule structures on a K-vector space (see section 3 for a more
exhaustive discussion). On the other side the Galois–Hopf algebra acts via the en-
domorphisms and not via the automorphisms of such an L-algebraic object, which
may restrict the applications of descent, as explained in the previous paragraph.
As for the complication of having to base change to L[X], it is worth noticing that
this ring has still many desirable properties for a base ring (it is the infinitesimal
deformation space of a field and an auto-injective ring, many of the schemes de-
fined via functor of points are still representable, and so on). Hence the loss of
a field as base scheme seems slight with respect to the gain of an action through
the automorphisms that potentially allows us to extend many of the applications
of separable Galois descent to the inseparable case.

To conclude the comparison notice that the automorphism scheme is naturally
related to the Heerema–Galois group as

HG(L/K) = Aut(L/K)(K[X]) = Autt(L/K)(K[X]).

It was already known that if L/K is normal and modular, an action of Aut(L/K)
induces an action of GHA(L/K)∗ (in fact, of any group scheme under which L/K
is a torsor; see Lemma 3.1 and Theorem 3.3), hence, by the theory of descent along
torsors, descent data. Our main result proves that in fact it is enough to have an
action of its K[X]-points in order to have descent over K.

The article is divided as follows: the first section is devoted to defining the
Heerema–Galois group and to exploring its relation with the group of higher order
differential operators. In the second one we apply the results of [1] in order to
obtain descent conditions on L-vector spaces and consequently on algebras and
more in general separated schemes of finite type. In the third section we explain the
connections between the Heerema–Galois group and the (truncated) automorphism
scheme. The fourth section is devoted to a small generalization of the results of the
second section, namely, proving that in order to have descent it is enough to have
an HG-action on a (possibly nontrivial) infinitesimal deformation of the algebraic
object we are interested in. Finally, in the last section we collect some natural
questions that remain open.

Notation. If A → B is a ring homomorphism and X is a scheme over SpecA, we
use the notation X ⊗AB to abbreviate X ×SpecA SpecB. By an algebraic object R
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over a ring A we always mean that R is an A-module with some additional algebraic
structure (for example a ring, a Hopf algebra, a Lie algebra and so on).

1. The Heerema–Galois group

Let’s fix K a field of positive characteristic and an algebraic closure K̄ of K. Let
α ∈ K̄ be an algebraic element which is inseparable over K. The elementary exten-
sion K(α) is the simpler example of (finite purely inseparable) modular extensions
of finite exponent:

Definition 1.1 (see [14, Thm. 1] and [5, Def 1.1]). An algebraic extension L of K
is said to be of finite exponent if there is a positive natural number n such that Lpn

is separable over K. The minimal of such n is said to be the exponent of L over K.
An algebraic extension L of K is modular if it is isomorphic to a (possibly

infinite) tensor product over K of elementary extensions (that is, of extensions of
K generated by one element).

We will discuss Galois descent when L/K is a finite modular normal extension.
Note though that this condition can be achieved in many situations such as if L/K
is purely inseparable or finite and normal. Then by [10, Thm. 6] there exists a
modular closure of L with respect to K, denoted by ML/K , which is the smallest
field containing L which is modular over K. Moreover, the modular closure of L
over K is finite and purely inseparable over L (in particular it is finite over K
whenever L is), and its exponent over K is equal to the exponent of L over K. In
particular, if L/K is normal and finite, by base change to ML/K we can always
assume that L/K is also modular.

For the rest of this article, L will always be a finite normal modular extension
of K. In this setting, Heerema in [8] constructed a Galois group theory as follows:
let’s denote by e ∈ N the exponent of L over K and let L[X] = L[X]/(Xpe

).1 Let

(1) A = {φ ∈ Aut(L[X]) | φ(X) = X},
where Aut(L[X]) is the group of ring automorphisms of L[X], and for any G ⊂ A
subgroup, let’s denote

LG = {a ∈ L | α(a) = a ∀α ∈ G}.
Then by [8, Thm. 3.1], there exists a subgroup G ⊂ A so that K = LG. As G
fixes K and X, we can simply consider G to be Aut(L[X]/K[X]); we will call it
the Heerema–Galois group of L over K and denote it with HG(L/K) or simply HG
when L and K are fixed.

Remark 1.2. Unlike the classical Galois theory, it is not true that the L[X]HG =

K[X], as for example a0 + ape−1X
pe−1

, is fixed by HG for every ape−1 ∈ L and
a0 ∈ K.

Definition 1.3. A higher derivation of rank n on L is a family of additive maps
{d(k) : L → L} for 0 ≤ k ≤ n such that

i) d(0) = id,

1Note that in [8] L[X] is defined as the truncated polynomial L[X] modulo Xpe−1+1 rather

than Xpe . It is straightforward to check that this does not make any difference for our results,
and the latter seems a better choice for this article.



72 GIULIA BATTISTON

ii) for every 0 ≤ k < n and a, b ∈ L one has

d(k)(ab) =
k∑

i=0

d(i)(a)d(k−i)(b).

A higher derivation {d(k)} is relative to K if every d(k) is a K-linear map (which
by (ii) is equivalent to asking that d(k)(a) = 0 for every a ∈ K and every k > 0).
We will denote by H≤n(L/K) the set of higher derivations of rank n on L relative
to K. It admits a group structure defined as {d(k)} · {e(k)} = {f (k)} with f (k) =∑k

i=0 d
(i)e(k−i).

For our purposes, let’s unravel the main ingredient in the proof of [8, Thm. 3.1].
It is a classical result that if L is modular over K of exponent e, then K is the field
of constants of some higher derivation. That is, there exists {d(k)} higher derivation
on L such that K = {a ∈ L | d(k)(a) = 0 ∀k > 0}. Moreover, this higher derivation
can be taken to be of rank pe − 1. Actually the two properties of being modular
of exponent e and of being the field of constants of one (and hence of all) higher
derivation of rank pe − 1 on L relative to K are equivalent by [14, Thm. 1]. The
core of the Galois correspondence in [8] sits then in the fact that the morphism

(2) δ : H≤pe−1(L/K) → HG(L/K)

defined as δ({d(k)})(X) = X and δ({d(k)})(a) =
∑pe−1

k=0 d(k)(a)X
k
for a ∈ L is an

isomorphism onto

A0 = {φ ∈ A | φ(a)− a ∈ (X) ∀a ∈ L},

thus allowing us to see higher derivations of rank pe−1 as a sub-group of HG(L/K).

2. Descending objects from L to K

If V is a K-vector space and W is a sub-vector space of VL = V ⊗K L, it is
natural to ask whether W is defined over K, namely whether there exists W0 ⊂ V
a K-sub-vector space such that W = W0 ⊗K L. More generally, given an L-vector
space W we say that W0 ⊂ W is a K-form if W0 has a structure of K-vector space
and the morphism W0 ⊗K L → W given by w ⊗ a �→ a · w is an isomorphism of
L-vector spaces.

Of course, every L-vector space admits a K-form, but this is not the case if we
endow W with an additional algebraic structure: for example if W is an L-algebra,
we say that W0 ⊂ W is a K-form for W (as an algebra) if W0 has a structure of
K-algebra and the morphism W0 ⊗K L is an isomorphism of L-algebras. Indeed,
a K-form of an algebra is also a K-form of the underlying vector space, but the
converse does not hold.

Remark 2.1. Another interesting property that one may wish to descend from L to
K, as suggested in the beginning of the paragraph, is that of an embedded K-form;
namely, we want not only to descend an object, in our example W , but also its
embedding in a bigger object that is defined over K, in our example W ⊂ V ⊗K L.
More generally, one is interested in descending morphisms φ : V ⊗K L → V ′ ⊗K L
between objects that are defined over K, namely understanding whether there is a
morphism φ0 : V → V ′ such that φ = φ0 ⊗ id.
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2.1. Descent of sub-vector spaces. We will focus first on the descent of vector
spaces without additional algebraic structure. Before stating the theorem that will
be central in proving our main result, let’s introduce some notation. Let L/K be a
finite modular normal extension and let’s once and for all fix a decomposition

(3) L = K(α0)⊗K K(α1)⊗K · · · ⊗K K(αm)

with α0 separable over K and αi a pni -th root of ai ∈ K, for i = 1, . . . ,m and ni

minimal (that is, ni is the exponent of K(αi) over K). Let G be the Galois group
of K(α0) over K. Then we define H0 = K[G] and Hi = O(αpni ), that is, the Hopf

algebra over K defined as follows: the generators are D
(k)
i with k = 1, . . . , pni − 1,

counit ε : Hi → K is given by D
(k)
i = 0 if k > 0 and D

(0)
i = 1, multiplication given

by

D
(h)
i D

(k)
i =

(
h+ k

h

)
D

(h+k)
i

for s+ t < pni and zero otherwise and comultiplication given by

Δ(D
(k)
i ) =

k∑
h=0

D
(h)
i ⊗D

(k−h)
i .

Let’s finally define the Galois–Hopf algebra of L over K to be

GHA(L/K) = H0 ⊗K H1 ⊗K · · · ⊗K Hm .

Then GHA(L/K) acts on L via

D
(k)
i (αl

i) =

(
l

k

)
αl−k
i and Dg(α0) = g(α0),

where Dg, for g ∈ G, denotes the generators of K[G]. Note that if V is a K-vector
space, the action of GHA(L/K) on L that we just described induces a natural
action on VL = V ⊗K L simply by tensoring with the trivial action on V , and this
action is L-semilinear:

Definition 2.2. Let V be an L-vector space. Then an action of GHA(L/K) is
called L-semilinear if V is a GHA(L/K)-module under this action and for every
D ∈ GHA(L/K), a ∈ L and v ∈ V one has

D(a · v) = Δ(D)(a⊗ v).

We now have all the definitions that we need in order to state the key theorem
that relies on K-forms and GHA(L/K)-semilinear actions:

Theorem 2.3 ([1, Lemma 1.2(3); Thm. 1.2(5); Thm. 1.2(8)]). Let L be a normal
modular finite field extension of K and let V be an L-vector space on which GHA =
GHA(L/K) acts L-semilinearly. Let ε be the counit of GHA; then if we define

V GHA = {v ∈ V | D · v = ε(D) · v, ∀D ∈ GHA},
V GHA is a K-form for V .

Remark 2.4. As noted in the introduction, the previous theorem is a direct ap-
plication of faithfully flat descent theory, once we remark that L is a torsor for
GHA(L/K)∗, the Cartier dual of GHA(L/K). Hence a module structure of the
latter on V gives a comodule structure of the first and thus, by descent along tor-
sors (see for example [7, Sec. 14.21]) together with the fact that L is faithfully flat
over K, a K-form on V .
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In particular, if V is a vector space over K and we consider VL = L⊗K V with
the natural GHA(L/K)-action, we have that the subspaces of VL defined over K
are exactly those invariant under the GHA(L/K)-action. We want now to translate
this in a more Galois-like setting, namely proving the following:

Theorem 2.5. Let V be a vector space over K and L a finite modular normal
extension, and let HG(L/K) be the Heerema–Galois group of L over K. Let W be
a sub-vector space of VL = L⊗k V . Then the following are equivalent:

i) there exists a K-sub-vector space W0 ⊂ V such that W = L ⊗k W0 as
subspaces of VL;

ii) W is stable under the natural GHA(L/K)-action over VL;
iii) W ⊗L L[X] is stable under the natural HG(L/K)-action on

VL[X] = V ⊗L L[X] = V ⊗K K[X].

Proof. If (i) holds, then clearly (ii) and (iii) hold as well. Moreover by Theorem
2.3, (ii) implies (i). We are left to prove that (iii) implies (ii). Let’s first fix some
notation: recall that we have fixed a decomposition (3) of L. Let Dg, g ∈ G, be the
generators of the Hopf algebra H0 = K[G] and let φg ∈ HG(L/K) be defined as

g ⊗ id⊗ · · · ⊗ id on L and φg(X) = X. Let’s moreover define the following higher

derivation on L relative to K of rank pe − 1, denoted {d(k)i }, i = 1, . . . ,m, defined

by d
(0)
i = id and

d
(k)
i =

⎧⎨
⎩Did ⊗D

(0)
1 ⊗ · · · ⊗D

(0)
i−1 ⊗D

( k

pe−ni
)

i ⊗ 0D
(0)
i+1 ⊗ · · · ⊗D

(0)
m if pe−ni | k,

0 otherwise

(in short, we are shifting the action of the Ds
i s on L so that they form a higher

derivation of rank pe−1 rather than pni −1). Now that we have fixed the notation,
we need to show that W is stable under the action of the Dgs, for g ∈ G, and of

the D
(k)
i s, for i = 1, . . . ,m, k = 1, . . . , p(ni−1) (by abuse of notation, we still denote

by Dg what should be denoted Dg ⊗D
(0)
1 ⊗ · · · ⊗D

(0)
m and similarly for D

(k)
i ).

Let δ be defined as in (2) and let φi = δ({d(k)i }) ∈ HG(L/K). We fix a basis vj
of V over K, a basis ws of W over L and still denote by vj the L[X]-basis vj ⊗ 1

of V ⊗K L[X], and similarly for ws. Let w ∈ W , w =
∑

j γjvj , as W ⊗L L[X] is

invariant under the action of HG(L/K) and the basis vj is stable under the action
of HG(L/K). Then

φi(w) =
∑
j

φi(γj)φi(vj)

=
∑
j

φi(γj)vj =
∑
k

∑
j

D
(k)
i (γj)X

kpe−ni

vj

=
∑
i

∑
s

βi
sX

i
ws

for some βi
s ∈ L.

As vjX
i
is a basis for V ·Xi

where V ⊗L[X] = V · 1⊕V ·X ⊕· · ·⊕V ·Xpe−1
, it

follows that D
(k)
i (w) =

∑
j D

(k)
i (γj)vj =

∑
s β

kpe−ni

s ws. In particular, W is stable

under the action of the D
(k)
i s. As for the Dgs, the proof goes similarly considering

φg ∈ G defined as φg(a) = g(a) for a ∈ L and φg(X) = X. �
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Remark 2.6. The previous proof needs a rather involved notation because ni may

differ from e for some i and thus one needs to shift the D
(k)
i : in order to understand

why, let L = K(α) with α p-th root of a ∈ K; that is, let e = 1. Let {d(k)} be
a higher derivation of rank at least p. Then by Lucas’ theorem 0 = d(p)(a) =
d(p)(αp) = (d(1)(α))p. Hence, every higher derivation of rank at least p must

have d(1) = 0. Thus there is no way to define a {d(k)} ∈ Hp2−1(L/K) such that
d(1) = D(1).

2.2. Descending sub-schemes and morphisms. Once the descent of sub-vector
spaces is understood, the descent of sub-schemes follows directly from the fact that
the closure of a sub-vector space of a ring R under multiplication, that is, the
property of being an ideal, can be checked after base change:

Lemma 2.7. Let X be a separated scheme over K, L a finite normal modular
extension of K and Z a closed sub-scheme of XL = X ⊗K L. Then there exists
a closed sub-scheme Z0 ⊂ X such that Z = Z0 ⊗K L if and only if Z ⊗L L[X] is
stable under the natural action of HG(L/K) over XL ⊗L L[X].

Proof. If Z descends to K, then it is clearly invariant under HG(L/K). As X is
separated, we can cover it with affine opens {Ui} whose intersections are affine and
hence reduce ourselves to the case where X is affine with global sections R. Let I be
the defining ideal of Z inside R⊗KL. Then as a vector space it is HG(L/K)-stable,
as Z is. Hence by Theorem 2.5 there exists a sub-vector space I0 of R such that
I = I0 ⊗K L as vector spaces. But I0 is an ideal if (and only if) I is one: the only
property to check is the closure of I0 under multiplication by an element r ∈ R,
and it is enough to do it after extension of scalars. �

Remark 2.8. Note that if L/K is purely inseparable, then SpecL → SpecK is a
universal homeomorphism; in particular the topological spaces underlying X and
X⊗KL are homeomorphic for everyK-scheme X. Hence the underlying topological
space of every sub-scheme of X ⊗K L is “defined” over K, but this may not be the
case for its algebraic structure.

The descent of a morphism between separated schemes follows now from the
previous case using the graph of such a morphism:

Lemma 2.9. Let X and Y be two separated schemes over K, and let L be a modular
extension of K. Then the image of the map

◦L : HomK(X,Y ) → HomL(XL, YL)

sending f to f ⊗ id consists of all morphisms g ∈ HomL(XL, YL) such that

g ⊗ id : XL ⊗L L[X] → YL ⊗L L[X]

is HG(L/K)-equivariant.

Proof. If g is in the image of ◦L, that is, g = f ⊗ id for some f ∈ HomK(X,Y ),
then g ⊗ id is certainly HG-equivariant. On the other hand, let Γg be the graph of
g; namely let Γg : XL → XL ×SpecL YL be the immersion given by (id, g). Then
g = π2 ◦ Γg, and as π2 is defined over K, it is enough to understand when Γg

descends to K. But as we are dealing with separated schemes, all graphs are closed
immersion, so we are reduced to Lemma 2.7. �
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2.3. Descending vector spaces. If L/K is a finite Galois extension, the classical
Galois descent theory says that any σ-linear Gal(L/K)-action on an L-vector space
V induces a K-form (in fact, it is a one to one correspondence thanks to Hilbert’s
Theorem 90).

As for sub-vector spaces, we would like to use Theorem 2.3 in order to get
a similar condition for modular extensions. Unlike the classical Galois descent
case, though, Theorem 2.3 does not give a correspondence between GHA(L/K)-
semilinear actions on V and K-forms, even though a description of K-forms can
be given in terms of precocycles (see [1, Thm. 1.2(8)]) or of cocycle if seen via
faithfully flat descent (see [6, Sec. 4]). We will not be interested in describing the
set of K-forms, but rather deciding whether a K-form exists. Of course this is a
trivial problem for vector spaces, but will be important when we endow the vector
space with an algebraic structure.

Definition 2.10. Let V be an L[X]-module. We say that an action of HG(L/K)
on V is σ-linear if for every a ∈ L[X] and v, v′ ∈ V , and for every σ ∈ HG(L/K)
one has

σ(v + v′) = σ(v) + σ(v′) and σ(a · v) = σ(a) · σ(v).

Theorem 2.11. Let L be a modular normal finite extension over K and let V
be an L-vector space endowed with a σ-linear action of HG(L/K) on V ⊗L L[X].
Then the action of HG(L/K) induces an L-semilinear action of GHA(L/K) on V ;
in particular, V admits a K-form.

Proof. The last statement follows from Theorem 2.5. As for the first claim, let e
be the exponent of L over K, and let’s consider the decomposition of L as in (3).

Fix a basis vs of V over L, and let φi and φg be as in Theorem 2.5. Let v be one

of the vss and 1 ≤ i ≤ m, 0 ≤ k < pni . Then we can write φi(v) =
∑

j

∑
s γ

s
j vsX

j
,

where by abuse of notation we use v and vs instead of v⊗1 and vs⊗1, respectively.
Let γs

j be given by

(4) D
(k)
i (v) =

∑
s

γs
kpe−ni vs

and similarly let θs0 be given by

(5) Dg(v) =
∑
s

θs0vs,

where φg(v) =
∑

j

∑
s θ

s
jvsX

j
. It is evident that the action is additive and K[X]-

linear. We have to check that this defines a semilinear GHA(L/K)-action: namely
that V is a GHA(L/K)-module under this action and for every D ∈ GHA(L/K),
a ∈ L and v ∈ V one has

D(a · v) = Δ(D)(a⊗ v).

First, let’s check the second property: by additivity it is enough to prove it for an

element of the basis v and for the D
(k)
i s and the Dgs, as they generate GHA(L/K).
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Let λ ∈ L, then

φi(λ · v) =φi(λ)φi(v)

=
[
λ+D(1)(λ)X

pe−ni

+ · · ·
]
·
[∑

s

γs
0vs +

∑
s

γs
pe−ni vsX

pe−ni

+ · · ·
]

=λ ·
∑
s

γs
0vs + [

1∑
j=0

∑
s

D(j)(λ)γs
(1−j)pe−nivs]X

pe−ni

+ · · · ,

and semilinearity follows from the definition of the action and the fact that

Δ(D
(k)
i ) =

k∑
h=0

D
(h)
i ⊗D

(k−h)
i .

We can then use the very same argument with φg and Dg instead of φi and D
(k)
i .

We are left to check that (4) and (5) define a GHA(L/K)-module structure on V .

To do so, it is enough to check that the relations between the D
(k)
i s and Dgs are

satisfied by their image in EndK(V ). These relations are the following: for every
g, h ∈ G, every 1 ≤ i, j ≤ m and every h ≤ pni , k ≤ pnj one has

[D
(h)
i , Dg] = 0,

DgDh = Dgh,

D
(h)
i D

(k)
j =

{(
h+k
k

)
D

(h+k)
i if h+ k < pni and i = j,

0 else.

It is easy to see they follow from the fact that similar relations hold between φi,
φj and φg in HG(L/K) (and hence for their images in EndK[X](V ⊗K K[X])),

together with the semilinearity we just proved. �

2.4. Descending schemes. As before let L/K be a finite normal modular exten-
sion. We can now use the results of the previous section to determine when an
L-algebra admits a K-form as an algebra.

Definition 2.12. Let R be an L[X]-algebra. We say that an action of HG(L/K)
on R is σ-linear if for every a, b ∈ R and for every σ ∈ HG(L/K) one has

σ(a+ b) = σ(a) + σ(b) and σ(a · b) = σ(a) · σ(b).

Note that a σ-linear action on R does not respect the L[X]-algebra structure,
but it does respect the induced K and K[X]-algebra structure.

Definition 2.13. Let R be an L-algebra. Then an action of GHA(L/K) is called
L-semilinear if R is a GHA(L/K)-module for this action and for every a, b ∈ R
and for every D ∈ GHA(L/K) one has

D(a · b) = Δ(D)(a⊗ b).

Remark 2.14. Here we are focusing on the category of schemes, but once the de-
scent of vector spaces is established, descent results are also true for other kinds of
algebraic objects, such as Lie algebras or modules. Of course, we need to assume
that the HG(L/K)-action respects the algebraic structure we are interested in.
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Theorem 2.15. Let L be a modular finite extension over K and let R be an L-
algebra endowed with a σ-linear action of HG(L/K) on the L[X]-algebra R⊗LL[X].
Then the action of HG(L/K) induces an L-semilinear action of GHA(L/K) on R;
in particular, R admits a K-form as an L-algebra.

Proof. The proof of the first claim goes similarly to Theorem 2.11: we only need
to prove that if the action of GHA = GHA(L/K) is L-semilinear on the L-algebra,
then

RGHA = {r ∈ R | D · r = ε(D) · r, ∀D ∈ GHA}
has an induced structure of K-algebra. By linearity it is enough to check the action

on elements of the form Dg⊗D
(k1)
1 ⊗· · ·⊗D

(km)
m , and thus (by the relation between

multiplication and comultiplication on a Hopf algebra) on the D
(k)
i and Dg (with

the same abuse of notation as in the proof of Theorem 2.5). On these elements,
though, this is clear due to the very definition of the antipode on the Hi. Hence,
RGHA is closed under multiplication (and is a K-algebra), so it follows that it is a
K-form for the L-algebra R. Note that one could derive this last point from the
general theory of [1] on the descent of algebraic structures, but one needs to go
through quite some notation in order to unravel it. �

Finally letX be any separated scheme. Mimicking the Galois case, letXL[X],σ be

the base change of X to L[X] via σ ◦ ι, with ι : L ↪→ L[X] the structure morphism.

Definition 2.16. A K-descent data on X is a collection of isomorphisms

φσ : XL[X],σ → XL[X],id

for σ ∈ HG(L/K) such that φσ · σ∗(φτ ) = φστ .

Then we have the following:

Theorem 2.17. Let L/K be a modular normal finite field extension and let X be
a separated L-scheme. Then X is defined over K (that is, there exists X0 a K-
scheme such that X � X0 ⊗K L as L-schemes) if and only if there is a K-descent
data on X and an affine covering {Ui}i∈I of X such that φσ(UL[X],σ) = UL[X],id

for every U ∈ {Ui}i∈I and every σ ∈ HG(L/K).

Proof. As X is separated, U ∩ V is affine, and moreover

ψU,V : O(U)⊗L O(V ) �→ O(U ∩ V )

is surjective for every U, V ∈ {Ui}i∈I . As φσ(UL[X],σ) = UL[X],id, the descent

data induces an action of HG(L/K) on O(U) for every U ∈ {Ui}i∈I , hence, by
Theorem 2.15, a descent U0 of U for every U ∈ {Ui}i∈I . As the φσ are global
morphisms, this HG(L/K)-action is compatible on the intersections; that is, for
every U, V ∈ {Ui}i∈I , the morphism ψU,V induces anHG(L/K)-action on O(U∩V )
which gives the gluing for U0 and V0. �

3. The automorphism scheme

The goal of this section is to understand the role of the (truncated) automorphism
group scheme in the framework of descent along modular field extensions and its
connection with the Heerema–Galois group. Let A be an algebraic object over R,
that is, an R-module endowed with some algebraic structure (for example a ring
structure), and let AutR(A) be the sub-group of the automorphisms of A as a
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module that respect the additional algebraic structure. Hence one can define the
group valued functor Aut(A/R) on every A-algebra A′ as

A′ �→ AutA′(R⊗A A′).

We denote again by Aut(A/R) the group scheme representing this functor when it
is representable. If L/K is a finite field extension, Aut(L/K) is called the auto-
morphism scheme of L/K and was introduced by Bégueri in [2].

Recall that a truncated K-scheme is an affine scheme with global sections of the
form K[t1, . . . , tm]/(tn1

1 , . . . , tnm
m ) for some m,ni ∈ N. If L/K is finite by restricting

ourselves to the category of truncated schemes we obtain the truncated automor-
phism scheme of L/K, denoted by Autt(L/K), as defined by Chase in [3]. Namely
this K-group scheme represents the functor

T �→ AutT (T ⊗K L)

in the category of truncated K-schemes. In particular, Autt(L/K) is itself a trun-
cated K-group scheme and it is a sub-group scheme of Aut(L/K).

In case L/K is Galois, the descent of algebraic objects follows quite directly from
faithfully flat descent, thanks to the fact that if L/K is Galois of group G, then L is
a G-torsor, where G = Aut(L/K) denotes the constant K-group scheme associated
to G. Descent along torsors (see for example [7, Sec. 14.21]) implies then that if M
is an L-module, it is equivalent to give descent data on M and a G-action on M
(or, equivalently, a K[G]∗-comodule structure, where K[G]∗ is the Cartier dual of
the group algebra K[G]). It is an easy fact that L/K is Galois of group G if and
only if it is a torsor under a constant group scheme, which then can only be G.

If, on the other hand, we are dealing with purely inseparable extensions, the
following holds:

Lemma 3.1 ([3, Prop. 5.2]). A finite field extension L/K is normal and purely
inseparable if and only if L is a torsor under some truncated K-group scheme.

Example 3.2. For example L/K is a torsor under GHA(L/K)∗, which is indeed a
truncated K-scheme if L/K is purely inseparable. Notice that even though L/K is
not a torsor under Aut(L/K), the latter determines univocally, up to isomorphism,
the extension L/K (see [13, Thm. 1.2]).

In the inseparable case, though, the situation is a little more involved than in
the separable one, as there can be nonisomorphic truncated group schemes under
which L is a torsor. Nevertheless there is a universal object under which all of these
actions must factor:

Theorem 3.3 ([3, 2.1(a)]). Let L/K be a finite field extension and H a truncated
K-group scheme acting on L. Then there exists a unique morphism

γH : H → Autt(L/K)

of group schemes preserving the action of H on L.

In particular, if L/K is a finite normal modular extension let’s write L =
K(α) ⊗K L′, with K(α) Galois over K with Galois group G and L′ purely in-
separable over K. Let R be an algebraic object over L. If R � R0 ⊗K L for some
R0 algebraic object over K, then there is a natural transformation of group functors

(6) ηR : Aut(L/K) → Aut(R/K)
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whose restriction to G× Autt(L
′/K) < Aut(L/K) will be denoted by ηRt . On the

other hand if we have such a natural transformation and H is a truncated K-group
scheme under which L′/K is a torsor (see Lemma 3.1) so that L′/K is an H-torsor,
then L G×H-torsor, and the pullback of ηRt via id⊗γH (see Theorem 3.3) defines
a G×H-equivariant structure on R and hence (see [7, 14.21]) a descent for R over
K.

We have hence proven the following:

Proposition 3.4. Let L/K be a finite normal modular extension of exponent less
than or equal to e and let’s denote K[X] = K[X]/(Xpe

). Let R be an algebraic
object over L. Then the following are equivalent:

i) there exists an R0 algebraic object over K such that R � R0 ⊗K L as
L-algebraic objects;

ii) there exists a natural transformation of group valued functors

ηR : Aut(L/K) → Aut(R/K);

iii) there exists a group homomorphism

ηR(K[X]) : Aut(L/K)(K[X]) → Aut(R/K)(K[X])

that is a K[X]-linear group action of HG(L/K) on R⊗K K[X] preserving
the algebraic structure on R.

Remark 3.5. If L/K is finite Galois, by taking e = 0, one retrieves the classical
Galois descent.

4. A generalization

Until now we have dealt with the action of HG(L/K) on the base change to
L[X] of an L-algebraic object R. It can be useful to show that actually something
slightly weaker is enough for R to be defined over K, namely that it is enough for
the HG(L/K)-action to be defined over some infinitesimal deformation of R:

Proposition 4.1. Let L/K be a finite normal modular extension of exponent less
than or equal to 1 and let V be a K-vector space, and L[X] = L[X]/(Xp). Let W
be a sub-vector space of VL. Then W ⊂ VL is defined over K if and only if there
exists W̃ a free sub-module of VL[X] such that

i) W̃ is invariant under the natural HG(L/K)-action on VL[X],

ii) W̃ ⊗L[X] L = W .

That is, W ⊂ VL is defined over K if and only if it admits a free (that is, flat)
HG-invariant deformation in VL over L[X].

Proof. One direction of the proposition follows easily from Theorem 2.5 simply
by taking W̃ to be W ⊗L L[X]. Before proving the other direction we need one
preparatory lemma:

Lemma 4.2. Let V be an L-vector space, let L[X] = L[X]/(XN ) and let W be a
free sub-module of VL[X] = V ⊗LL[X]. Then W is X-saturated, by which we mean

that if v ·Xn ∈ W − {0} for some v ∈ VL[X] and n < N , then the image v of v via

the projection on (X) is contained in W = W ⊗L[X] L ⊂ V .
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Proof. Let’s consider the decomposition VL[X] = V · 1 ⊕ · · · ⊕ V · XN−1
and let’s

fix a basis {wi}i∈I of W . Then for every i ∈ I,

wi =
∑
b

vi,bX
b

with vi,b ∈ V . As W is free, the images of wi in W = W ⊗L[X] L ⊂ V (that we can

identify with vi,0) form a basis of W . Now let v ∈ V such that v⊗X
n
is a nonzero

element of W . If v̄ = 0 there is nothing to prove; otherwise let λi ∈ L[X] such that

v ⊗X
n
=

∑
i

wiλi.

Let’s write λi =
∑

a λi,aX
a
with λi,a ∈ L. Then

v ⊗X
n
=

∑
j

X
j ·

[ ∑
a+b=j

λi,avi,b
]
,

and in particular it follows that for every j < n, one has
∑

a+b=j λi,avi,b = 0. For

j = 0, this implies that
∑

i λi,0vi,0 = 0, hence, as the vi,0s are linearly independent,
that λi,0 = 0 for every i ∈ I. But then by induction on a the same argument shows
that λi,a = 0 for every i ∈ I and a < n. In particular if we define

μi =
N−n−1∑

a

λi,a+nX
a

it follows that v′ = v −
∑

i μiwi ∈ X · L[X] and v + v′ ∈ W , hence in particular

that v + v′ = v ∈ W . �

We are ready now to prove the reverse implication of the proposition; hence let W̃
be a sub-module of VL[X] which is HG(L/K)-invariant and such that its closed fiber

W̃ ⊗L[X] L equals W . In order to prove that W is defined over K, by Theorem 2.3

it is enough to prove that W is invariant under the natural GHA(L/K)-action on
VL.

It is hence enough to check that D
(k)
i (W ) ⊂ W and that Dg(W ) ⊂ W for all

i, g as in the proof of Theorem 2.5 and k < p. As D
(k)
i = k!D

(1)
i for k < p, it is

moreover enough to do the check for k = 1.
As W̃ is free as an L[X]-module we can choose a basis wt of W̃ and a basis vs

of V . Let’s fix w = wt for some t and write w =
∑

s vsλs, with λs ∈ L[X] and the
usual abuse of notation vs for vs ⊗ 1.

Let φi and φg ∈ HG(L/K) be as in the proof of Theorem 2.5. Then by hypothesis

φg(w) =
∑
s

vs
[∑

a

g(λs,a)X
a]

is in W̃ , where we decompose λs =
∑

a λs,aX
a
with λs,a ∈ L. In particular

Dg(w̄) = φg(w) ∈ W and hence Dg(W ) ⊂ W . As for the D
(k)
i , we have that

φi(w)− w =
∑
s

vsD
(1)
i (λs)X + · · ·+

∑
s

vsD
(k)
i (λs)X

k
+ · · ·

= X ·
∑
s

vsD
(1)
i (λs,0) +X

2 · ṽ
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is in W̃ , with ṽ ∈ VL[X]. In particular by Lemma 4.2 D
(1)
i (w̄) =

∑
s vsD

(1)
i (λs,0) ∈

W , hence D
(1)
i (W ) ⊂ W for every i. �

Note that even though the previous proposition is proved only for exponent 1,
one can use it as an induction step to get similar results for field extensions of
higher exponent.

Remark 4.3. As in the case of Theorem 2.5, one can use the previous proposition
to descend vector spaces endowed with additional algebraic structure, like ideals,
Hopf-ideals, or to descend morphisms between two objects defined overK, following
the ideas of section 2.

5. Open questions

In order for the descent theory we described in this article to fully extend the
classical Galois descent theory, there are still some open questions that need to be
answered.

The first one concerns infinite (algebraic) extensions: if L/K is Galois of infinite
degree, then G = Aut(L/K) still provides a Galois correspondence by endowing G
with the Krull topology. If X is a K-variety and K̄ is an algebraic closure of K,
this allows us for example to understand which sub-varieties of XK̄ = X ⊗K K̄ are
defined over K just by looking at the natural action of the absolute Galois group
of K on the closed points of XK̄ . The Heerema–Galois group is defined and does
work for any L/K of finite exponent (even if the degree is infinite), thus leaving
the following questions open:

Question 1. If L/K is a modular normal field extension of infinite exponent, is it
possible to define the Heerema–Galois group of such extension?

Question 2. Which topology should then be given on HG(L/K) in order to extend
the Krull topology and to get descent for objects endowed with a continuous action
of HG(L/K)?

Another interesting point of view on descent theory comes from model theory.
Namely, Galois correspondence has been generalized in this framework by Poizat
[12], and then Pillay in [11] did the same for descent of constructible sets, working
with a structure M (with some good properties) and its group of automorphisms
fixing pointwise a sub-set A of the universe M of M, thus obtaining descent for
definable (that is, constructible) sets that are invariant under this group of auto-
morphism (see [11, Prop. 4.2]). This naturally leads to the following:

Question 3. Is there a model theoretic proof of the descent results in this article?
In which language should this be considered?
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