Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A theory of Galois descent for finite inseparable extensions


Author: Giulia Battiston
Journal: Proc. Amer. Math. Soc. 146 (2018), 69-83
MSC (2010): Primary 14G17, 14A15, 12F15
DOI: https://doi.org/10.1090/proc/13713
Published electronically: August 31, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a generalization of Galois descent to finite normal field extension $ L/K$, using the Heerema-Galois group $ \mathrm {Aut}(L[\overline {X}]/K[\overline {X}])$ where $ L[\overline {X}]=L[X]/(X^{p^e})$ and $ e$ is the exponent of $ L$ over $ K$.


References [Enhancements On Off] (What's this?)

  • [1] Harry Prince Allen and Moss Eisenberg Sweedler, A theory of linear descent based upon Hopf algebraic techniques, J. Algebra 12 (1969), 242-294. MR 0242906, https://doi.org/10.1016/0021-8693(69)90051-9
  • [2] Lucile Bégueri, Schéma d'automorphisms. Application à l'étude d'extensions finies radicielles, Bull. Sci. Math. (2) 93 (1969), 89-111 (French). MR 0257047
  • [3] Stephen U. Chase, On the automorphism scheme of a purely inseparable field extension, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 75-106. MR 0354629
  • [4] R. L. Davis, A Galois theory for a class of inseparable field extensions, Trans. Amer. Math. Soc. 213 (1975), 195-203. MR 0379453, https://doi.org/10.2307/1998043
  • [5] James K. Deveney and John N. Mordeson, Higher derivation Galois theory of inseparable field extensions, Handbook of algebra, Vol. 1, Handb. Algebr., vol. 1, Elsevier/North-Holland, Amsterdam, 1996, pp. 187-220. MR 1421802, https://doi.org/10.1016/S1570-7954(96)80010-6
  • [6] Alexander Grothendieck, Technique de descente et théorèmes d'existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris, 1995, Exp. No. 190, pp. 299-327 (French). MR 1603475
  • [7] Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I: Schemes with examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. MR 2675155
  • [8] Nickolas Heerema, A Galois theory for inseparable field extensions, Trans. Amer. Math. Soc. 154 (1971), 193-200. MR 0269632, https://doi.org/10.2307/1995437
  • [9] James S. Milne, Algebraic geometry, http://www.jmilne.org/math/CourseNotes/ag.html.
  • [10] John N. Mordeson, Splitting of field extensions, Arch. Math. (Basel) 26 (1975), no. 6, 606-610. MR 0392952, https://doi.org/10.1007/BF01229788
  • [11] Anand Pillay, Remarks on Galois cohomology and definability, J. Symbolic Logic 62 (1997), no. 2, 487-492. MR 1464109, https://doi.org/10.2307/2275542
  • [12] Bruno Poizat, Une théorie de Galois imaginaire, J. Symbolic Logic 48 (1983), no. 4, 1151-1170 (1984) (French). MR 727805, https://doi.org/10.2307/2273680
  • [13] Pedro J. Sancho de Salas, Automorphism scheme of a finite field extension, Trans. Amer. Math. Soc. 352 (2000), no. 2, 595-608. MR 1615958, https://doi.org/10.1090/S0002-9947-99-02361-2
  • [14] Moss Eisenberg Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 0223343, https://doi.org/10.2307/1970711

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14G17, 14A15, 12F15

Retrieve articles in all journals with MSC (2010): 14G17, 14A15, 12F15


Additional Information

Giulia Battiston
Affiliation: Mathematisches Institut, Albert-Ludwigs-Universität, Eckerstr. 1, 79104 Freiburg, Germany
Email: gbattiston@mathi.uni-heidelberg.de

DOI: https://doi.org/10.1090/proc/13713
Received by editor(s): November 12, 2015
Received by editor(s) in revised form: February 16, 2017
Published electronically: August 31, 2017
Additional Notes: This work was supported by GK1821 “Cohomological Methods in Geometry”
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society