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TRUNCATED TOEPLITZ OPERATORS

AND COMPLEX SYMMETRIES

HARI BERCOVICI AND DAN TIMOTIN

(Communicated by Stephan Ramon Garćıa)

Abstract. We show that truncated Toeplitz operators are characterized by
a collection of complex symmetries. This was conjectured by Klís-Garlicka,
Lanucha, and Ptak, and proved by them in some special cases.

1. Introduction

The systematic study of truncated Toeplitz operators was initiated by Sara-
son [7]. Given an inner function u on the unit disc, this class, denoted by Tu
consists of those bounded operators on Ku = H2 � uH2 that are compressions of
multiplication operators. A recent survey of results in this area is contained in [5].

Sarason observed that, while every operator in Tu is complex symmetric (relative
to the natural conjugation onKu; see [4]), not every complex symmetric operator on
Ku belongs to Tu. Operators in Tu satisfy additional complex symmetry conditions
and the authors of [6] conjectured that every operator on Ku that satisfies these
additional symmetries necessarily belongs to Tu. This conjecture is proved in [6] in
many cases in which u is a Blaschke product. The purpose of this note is to provide
a proof of this conjecture for arbitrary inner functions u. In the case in which u
has at least one zero, it turns out that the operators in Tu are characterized by the
fact that they satisfy just two complex symmetries. In case u is singular, one needs
to require a countable collection of complex symmetries.

2. Notation and preliminaries

We denote by C the complex plane, by D = {z ∈ C : |z| < 1} the unit disc, and
by T = {z ∈ C : |z| = 1} the unit circle. As usual, we view the Hardy space H2 on
D as a subspace of L2 = L2(T) (relative to the normalized arclength measure on T)
by identifying functions analytic in D with their radial limits (which exist almost
everywhere). Similarly, the algebra H∞ of bounded analytic functions in D can be
viewed as a closed subalgebra of L∞ = L∞(T). We denote by S the shift operator
in H2, defined by (Sf)(z) = zf(z), f ∈ H2, z ∈ D.

A function u ∈ H∞ is said to be inner if |u| = 1 almost everywhere on T. For
instance, the function χ ∈ H∞ defined by χ(z) = z, z ∈ D, is inner. If u is an inner
function, the model space Ku (often denoted H(u) in the literature) is defined by
Ku = H2 � uH2 and PKu

: L2 → Ku denotes the orthogonal projection onto Ku.
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Given an arbitrary bounded operator A on a Hilbert space H, we denote by QA

the quadratic form on H defined by QA(f) = 〈Af, f〉, f ∈ H. A conjugation on a
Hilbert space H is an isometric, conjugate linear involution, that is, C ◦C = IH and
〈Ch,Ck〉 = 〈k, h〉 for h, k ∈ H. An operator A is then said to be C-symmetric [4]
or simply complex symmetric when C is understood, if A∗ = CAC. This condition
is easily seen to be equivalent to QA(f) = QA(Cf), f ∈ H.

Given an arbitrary inner function u, there is a conjugation Cu on L2 defined by
Cuf = uχf . This conjugation maps Ku bijectively onto itself and therefore it also
defines a conjugation on this space. We record for further use the following result
whose proof is a simple calculation.

Lemma 2.1. Suppose that u and v are inner functions in H∞ and v divides u.
Then for every f ∈ L2 we have

Cu(Cu/v(f)) = vf.

The space Ku is a reproducing kernel space of analytic functions on D. The
following well-known lemma is the H2 version of a result that holds in arbitrary
reproducing kernel Hilbert spaces. We sketch the proof for the reader’s convenience.

Lemma 2.2. Suppose that {fn}n∈N ⊂ H2. Then:

(i) The sequence {fn}n∈N converges weakly to a function f ∈ H2 if and only
if supn∈N

‖fn‖ < +∞ and limn→∞ fn(z) = f(z) for every z ∈ D.
(ii) The sequence {fn}n∈N converges in norm to a function f ∈ H2 if and only

if limn→∞ ‖fn‖ = ‖f‖ and limn→∞ fn(z) = f(z) for every z ∈ D.

Proof. To prove (i), suppose first that {fn}n∈N converges weakly to f . Then the se-
quence must be bounded by the uniform boundedness principle and limn→∞ fn(z) =
f(z) follows because f(z) = 〈f, kz〉, z ∈ D, where kz denotes the Szegö kernel. Con-
versely, if the sequence is bounded, then it has weak limit points, and the relation
limn→∞ fn(z) = f(z) shows that f is the unique limit point. Part (ii) follows from
(i) and standard Hilbert space arguments. �

We recall [7] that a bounded linear operator A onKu is called a truncated Toeplitz
operator if there exists a function ϕ ∈ L2 (called a symbol of A) such that

Af = PKu
(ϕf)

for every bounded function f ∈ Ku. The truncated Toeplitz operators on Ku form
a weakly closed subspace Tu of L(Ku). There is a simple characterization of the
operators in Tu that does not require a symbol. The space

K0
u = {g ∈ Ku : Sg ∈ Ku}.

is closed in Ku (since K0
u = Ku∩S−1(Ku)) and Ku�K0

u is generated by the vector
S∗u = χ(u− u(0)) (see, for instance, [7]). The following result is [7, Theorem 8.1].

Lemma 2.3. A bounded linear operator A on Ku belongs to Tu if and only if

(2.1) QA(f) = QA(Sf)

for every f ∈ K0
u.

Fix a ∈ D and denote by ba(z) = (z − a)/(1− āz), z ∈ D, the corresponding
Blaschke factor. The following result is used in [2, Section 4] as well as [6].
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Lemma 2.4. There is a unitary operator ωa : Ku → Ku◦ba defined by

(2.2) ωa(f) =

√
1− |a|2
1− āχ

f ◦ ba, f ∈ Ku.

We have ωaCu = Cu◦baωa, and ωaTuω∗
a = Tu◦ba .

3. Truncated Toeplitz operators and conjugations

Suppose that u is an inner function and A ∈ Tu. Then A is Cu symmetric, that
is, QA(f) = QA(Cuf) for every f ∈ Ku. Let v be an inner divisor of the function
u. Then Kv ⊂ Ku and it was observed in [6] that PvA|Kv is also Cv-symmetric.
The authors of [6] formulated the following conjecture.

Conjecture 3.1. A bounded linear operator A on Ku belongs to Tu if and only if,
for every inner divisor v of u, the compression PvA|Kv is Cv-symmetric.

This conjecture is proved in [6] for certain Blaschke products u, namely, Blaschke
products with a single zero, finite Blaschke products with simple zeros, and inter-
polating Blaschke products. The arguments rely on a characterization [3] of the
class Tu in terms of its matrix entries in a particular orthonormal basis for Ku. In
this section, we prove the conjecture for those inner functions u that have at least
one zero. The case of singular inner functions is treated in the following section.

Theorem 3.2. Suppose that u ∈ H∞ is an inner function and u(a) = 0 for some
a ∈ D. Then an operator A ∈ L(Ku) belongs to Tu if and only if it is Cu-symmetric
and QA(Cu/baf) = QA(f) for every f ∈ Ku/ba .

Proof. Suppose first that a = 0 and thus ba = χ. If f ∈ Ku, then Sf ∈ Ku if
and only if f ∈ Ku/χ. For such a function f we have CuCu/χf = χf = Sf by
Lemma 2.1. The two symmetry hypotheses in the statement imply that

QA(Sf) = QA(CuCu/zf) = QA(Cu/χf)) = QA(f).

It follows then from Lemma 2.3 that A ∈ Tu.
For the general case a �= 0 we use Lemma 2.4. The inner function v = u ◦ b−a

satisfies v(0) = 0, and the unitary map ωa defined in (2.2) yields by restriction uni-
tary maps from Kv onto Ku and from Kv/χ to Ku/ba that intertwine the standard
conjugations on these spaces. Therefore ωaAω∗

a is Cv-symmetric, and its compres-
sion to Kv/χ is Cv/χ-symmetric. By the first part of the proof, ωaAω∗

a ∈ Tv. It
follows from Lemma 2.4 that A ∈ Tu. �

We have thus proved a stronger version of the conjecture in case u has a zero in
D: an operator A on Ku is a truncated Toeplitz operator if and only if the complex
symmetry condition is satisfied by A as well as by a single one of its compressions
to model spaces.

4. Singular inner functions

Given a positive, singular Borel measure ν on T, we denote by eν the corre-
sponding singular inner function, that is,

(4.1) eν(z) = exp

(
−

∫
T

ζ + z

ζ − z
dν(ζ)

)
, z ∈ D.
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Lemma 4.1. Let ν be a nonzero, positive, singular Borel measure on T. Then there
exist η ∈ T and a sequence of nonzero, positive Borel measures μn ≤ ν, n ∈ N, such
that:

(i) limn→∞ eμn
(z) = 1 for every z ∈ D, and

(ii) for every g ∈ H2, the functions

eμn
− 1

μn(T)
(χ− η)g, n ∈ N,

converge weakly in H2 to (χ+ η)g as n → ∞.

Proof. Choose η ∈ T and a sequence {In}n∈N of arcs in T, symmetric about η, with
length |In| = 1/n, such that limn→∞(ν(In)/|In|) = +∞. This is possible since ν is
singular. Define the measures μn by

dμn =

√
|In|
ν(In)

χIn dν, n ∈ N.

By the maximum modulus principle, condition (i) only needs to be verified at z = 0,
and this is immediate because eμn

(0) = e−μn(T). In fact, we have

lim
n→∞

eμn
(z)− 1

μn(T)
=

z + η

z − η
, z ∈ D.

Lemma 2.2 shows that (ii) is true as well once we verify that

(4.2) sup
z∈D,n∈N

|z − η| |eμn
(z)− 1|

μn(T)
< ∞.

Observe first that, if z ∈ D and |z − η| < 10/n = 10|In|,

|z − η| |eμn
(z)− 1|

μn(T)
≤ 20|In|√

|In|ν(In)
= 20

√
|In|
ν(In)

,

and the last quantity tends to 0 by the choice of In. If |z − η| ≥ 10/n, we use the
inequalities

|eλ − 1| ≤ |λ|e|λ|, λ ∈ C,

and ∣∣∣∣ζ − z

ζ + z

∣∣∣∣ < 3, ζ ∈ In, z ∈ D, |z − ζ| > 10

n
,

to deduce that
|eμn

(z)− 1| ≤ 3μn(T)e
3μn(T).

For such values of z we see that

|z − η| |eμn
(z)− 1|

μn(T)
≤ 6e3μn(T) < 6e3ν(T).

This concludes the proof of the lemma. �

We need one more technical result before establishing Conjecture 3.1 for u = eν .
Recall that K0

u consists of those vectors f ∈ Ku with the property that Sf also
belongs to Ku. Clearly, K

0
v ⊂ K0

u if v is an inner divisor of u.

Lemma 4.2. Suppose that u ∈ H∞ is an inner function and {un}n∈N is a sequence
of inner divisors of u such that un+1 divides un, n ∈ N, and limn→∞ |un(0)| = 1.
Then

⋃
n∈N

K0
u/un

is dense in K0
u.
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Proof. We can, and do, assume without loss of generality that un(0) ≥ 0, n ∈ N.
The least common inner multiple of the functions {u/un}n∈N is equal to u, and
thus

⋂
n∈N

(u/un)H
2 = uH2 (see, for instance [1, Section 2.2]). It follows that⋃

n∈N
Ku/un

is dense in Ku and therefore the sequence {Pu/un
}n∈N converges to Pu

in the strong operator topology.
It was noted earlier that the space Ku/un

� K0
u/un

is generated by the vector

S∗(u/un). It follows from Lemma 2.2 that the sequence {u/un}n∈N converges in the
H2 norm to u, and thus limn→∞ S∗(u/un) = S∗u. If we denote by Pn and P the
orthogonal projections onto the spaces Ku/un

�K0
u/un

and Ku�K0
u, respectively, it

follows that the sequence {Pn}n∈N converges to P in the strong operator topology.
Given an arbitrary vector f ∈ K0

u, we have fn = Pu/un
f − PnPu/un

f ∈ K0
u/un

and

limn→∞ fn = f − Pf = f . The lemma follows. �

We may now give the solution of the conjecture for singular inner functions.

Theorem 4.3. Suppose that ν is a positive, singular Borel measure on T. Let A be
an operator on Keν that is, Ceν -symmetric, and such that for every positive Borel
measure μ ≤ ν, the compression of A to Keμ , is Ceμ-symmetric. Then A ∈ Teν .

Proof. Let η ∈ T and {μn}n∈N be as in Lemma 4.1. By Lemmas 2.1 and 4.2, it
suffices to show that QA(Sf) = QA(f) for every f ∈

⋃
n∈N

K0
eμ/eμn

. Fix n ∈ N,

f ∈ K0
eν/eμn

, and observe that then (χ − η)f ∈ Keν/eμn
. If m ≥ n, we also have

eμm
|eμn

and (χ− η)f ∈ Keν/eμm
. Lemma 2.1 yields

Ceν (Ceν/eμm
((χ− η)f)) = eμm

(χ− η)f.

The complex symmetry of A and of its compression to Keν/eμm
shows that

QA(eμm
(χ− η)f) = QA((χ− η)f), m ≥ n,

and therefore

0 =
1

μm(T)

(
〈A(eμm

(χ− η)f), eμm
(χ− η)f〉 − 〈A((χ− η)f), (χ− η)f〉

)
=

〈
eμm

− 1

μm(T)
(χ− η)f,A∗(eμm

(χ− η)f)

〉
.

+

〈
A((χ− η)f),

eμm
− 1

μm(T)
(χ− η)f

〉
.

By Lemma 4.1(ii) (1/μm(T))(eμm
− 1)(χ−η)f tends weakly in H2 to (χ+η)f . On

the other hand, eμm
(χ−η)f tends pointwise on D to (χ−η)f and ‖eμm

(χ−η)f‖ =
‖(χ − η)f‖. By Lemma 2.2 eμm

(χ − η)f tends to (χ − η)f in norm. We obtain
then, by letting m → ∞ in the last equality,

〈A((χ+ η)f), (χ− η)f〉+ 〈A((χ− η)f), (χ+ η)f〉 = 0.

A simple calculation yields then QA(Sf) = QA(f), thereby concluding the proof.
�

We observe that the argument above only requires that A and its compressions
to Keν/eμn

, n ∈ N, be complex symmetric.
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