TRUNCATED TOEPLITZ OPERATORS AND COMPLEX SYMMETRIES

HARI BERCOVICI AND DAN TIMOTIN

(Communicated by Stephan Ramon García)

Abstract

We show that truncated Toeplitz operators are characterized by a collection of complex symmetries. This was conjectured by Kliś-Garlicka, Lanucha, and Ptak, and proved by them in some special cases.

1. Introduction

The systematic study of truncated Toeplitz operators was initiated by Sarason 7. Given an inner function u on the unit disc, this class, denoted by \mathcal{T}_{u} consists of those bounded operators on $K_{u}=H^{2} \ominus u H^{2}$ that are compressions of multiplication operators. A recent survey of results in this area is contained in 5.

Sarason observed that, while every operator in \mathcal{T}_{u} is complex symmetric (relative to the natural conjugation on K_{u}; see (4), not every complex symmetric operator on K_{u} belongs to \mathcal{T}_{u}. Operators in \mathcal{T}_{u} satisfy additional complex symmetry conditions and the authors of [6] conjectured that every operator on K_{u} that satisfies these additional symmetries necessarily belongs to \mathcal{T}_{u}. This conjecture is proved in [6] in many cases in which u is a Blaschke product. The purpose of this note is to provide a proof of this conjecture for arbitrary inner functions u. In the case in which u has at least one zero, it turns out that the operators in \mathcal{T}_{u} are characterized by the fact that they satisfy just two complex symmetries. In case u is singular, one needs to require a countable collection of complex symmetries.

2. Notation and preliminaries

We denote by \mathbb{C} the complex plane, by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ the unit disc, and by $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ the unit circle. As usual, we view the Hardy space H^{2} on \mathbb{D} as a subspace of $L^{2}=L^{2}(\mathbb{T})$ (relative to the normalized arclength measure on \mathbb{T}) by identifying functions analytic in \mathbb{D} with their radial limits (which exist almost everywhere). Similarly, the algebra H^{∞} of bounded analytic functions in \mathbb{D} can be viewed as a closed subalgebra of $L^{\infty}=L^{\infty}(\mathbb{T})$. We denote by S the shift operator in H^{2}, defined by $(S f)(z)=z f(z), f \in H^{2}, z \in \mathbb{D}$.

A function $u \in H^{\infty}$ is said to be inner if $|u|=1$ almost everywhere on \mathbb{T}. For instance, the function $\chi \in H^{\infty}$ defined by $\chi(z)=z, z \in \mathbb{D}$, is inner. If u is an inner function, the model space K_{u} (often denoted $\mathcal{H}(u)$ in the literature) is defined by $K_{u}=H^{2} \ominus u H^{2}$ and $P_{K_{u}}: L^{2} \rightarrow K_{u}$ denotes the orthogonal projection onto K_{u}.

[^0]Given an arbitrary bounded operator A on a Hilbert space \mathcal{H}, we denote by Q_{A} the quadratic form on \mathcal{H} defined by $Q_{A}(f)=\langle A f, f\rangle, f \in \mathcal{H}$. A conjugation on a Hilbert space \mathcal{H} is an isometric, conjugate linear involution, that is, $C \circ C=I_{\mathcal{H}}$ and $\langle C h, C k\rangle=\langle k, h\rangle$ for $h, k \in \mathcal{H}$. An operator A is then said to be C-symmetric [4] or simply complex symmetric when C is understood, if $A^{*}=C A C$. This condition is easily seen to be equivalent to $Q_{A}(f)=Q_{A}(C f), f \in \mathcal{H}$.

Given an arbitrary inner function u, there is a conjugation C_{u} on L^{2} defined by $C_{u} f=u \overline{\chi f}$. This conjugation maps K_{u} bijectively onto itself and therefore it also defines a conjugation on this space. We record for further use the following result whose proof is a simple calculation.

Lemma 2.1. Suppose that u and v are inner functions in H^{∞} and v divides u. Then for every $f \in L^{2}$ we have

$$
C_{u}\left(C_{u / v}(f)\right)=v f
$$

The space K_{u} is a reproducing kernel space of analytic functions on \mathbb{D}. The following well-known lemma is the H^{2} version of a result that holds in arbitrary reproducing kernel Hilbert spaces. We sketch the proof for the reader's convenience.
Lemma 2.2. Suppose that $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset H^{2}$. Then:
(i) The sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to a function $f \in H^{2}$ if and only if $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|<+\infty$ and $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ for every $z \in \mathbb{D}$.
(ii) The sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges in norm to a function $f \in H^{2}$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|=\|f\|$ and $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ for every $z \in \mathbb{D}$.
Proof. To prove (i), suppose first that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to f. Then the sequence must be bounded by the uniform boundedness principle and $\lim _{n \rightarrow \infty} f_{n}(z)=$ $f(z)$ follows because $f(z)=\left\langle f, k_{z}\right\rangle, z \in \mathbb{D}$, where k_{z} denotes the Szegö kernel. Conversely, if the sequence is bounded, then it has weak limit points, and the relation $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ shows that f is the unique limit point. Part (ii) follows from (i) and standard Hilbert space arguments.

We recall [7] that a bounded linear operator A on K_{u} is called a truncated Toeplitz operator if there exists a function $\varphi \in L^{2}$ (called a symbol of A) such that

$$
A f=P_{K_{u}}(\varphi f)
$$

for every bounded function $f \in K_{u}$. The truncated Toeplitz operators on K_{u} form a weakly closed subspace \mathcal{T}_{u} of $\mathcal{L}\left(K_{u}\right)$. There is a simple characterization of the operators in \mathcal{T}_{u} that does not require a symbol. The space

$$
K_{u}^{0}=\left\{g \in K_{u}: S g \in K_{u}\right\} .
$$

is closed in $K_{u}\left(\right.$ since $\left.K_{u}^{0}=K_{u} \cap S^{-1}\left(K_{u}\right)\right)$ and $K_{u} \ominus K_{u}^{0}$ is generated by the vector $S^{*} u=\bar{\chi}(u-u(0))$ (see, for instance, [7]). The following result is [7, Theorem 8.1].

Lemma 2.3. A bounded linear operator A on K_{u} belongs to \mathcal{T}_{u} if and only if

$$
\begin{equation*}
Q_{A}(f)=Q_{A}(S f) \tag{2.1}
\end{equation*}
$$

for every $f \in K_{u}^{0}$.
Fix $a \in \mathbb{D}$ and denote by $b_{a}(z)=(z-a) /(1-\bar{a} z), z \in \mathbb{D}$, the corresponding Blaschke factor. The following result is used in [2, Section 4] as well as [6].

Lemma 2.4. There is a unitary operator $\omega_{a}: K_{u} \rightarrow K_{u \circ b_{a}}$ defined by

$$
\begin{equation*}
\omega_{a}(f)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} \chi} f \circ b_{a}, \quad f \in K_{u} . \tag{2.2}
\end{equation*}
$$

We have $\omega_{a} C_{u}=C_{u \circ b_{a}} \omega_{a}$, and $\omega_{a} \mathcal{T}_{u} \omega_{a}^{*}=\mathcal{T}_{u \circ b_{a}}$.

3. Truncated Toeplitz operators and conjugations

Suppose that u is an inner function and $A \in \mathcal{T}_{u}$. Then A is C_{u} symmetric, that is, $Q_{A}(f)=Q_{A}\left(C_{u} f\right)$ for every $f \in K_{u}$. Let v be an inner divisor of the function u. Then $K_{v} \subset K_{u}$ and it was observed in [6] that $P_{v} A \mid K_{v}$ is also C_{v}-symmetric. The authors of [6] formulated the following conjecture.

Conjecture 3.1. A bounded linear operator A on K_{u} belongs to \mathcal{T}_{u} if and only if, for every inner divisor v of u, the compression $P_{v} A \mid K_{v}$ is C_{v}-symmetric.

This conjecture is proved in [6] for certain Blaschke products u, namely, Blaschke products with a single zero, finite Blaschke products with simple zeros, and interpolating Blaschke products. The arguments rely on a characterization [3] of the class \mathcal{T}_{u} in terms of its matrix entries in a particular orthonormal basis for K_{u}. In this section, we prove the conjecture for those inner functions u that have at least one zero. The case of singular inner functions is treated in the following section.

Theorem 3.2. Suppose that $u \in H^{\infty}$ is an inner function and $u(a)=0$ for some $a \in \mathbb{D}$. Then an operator $A \in \mathcal{L}\left(K_{u}\right)$ belongs to \mathcal{T}_{u} if and only if it is C_{u}-symmetric and $Q_{A}\left(C_{u / b_{a}} f\right)=Q_{A}(f)$ for every $f \in K_{u / b_{a}}$.
Proof. Suppose first that $a=0$ and thus $b_{a}=\chi$. If $f \in K_{u}$, then $S f \in K_{u}$ if and only if $f \in K_{u / \chi}$. For such a function f we have $C_{u} C_{u / \chi} f=\chi f=S f$ by Lemma 2.1. The two symmetry hypotheses in the statement imply that

$$
\left.Q_{A}(S f)=Q_{A}\left(C_{u} C_{u / z} f\right)=Q_{A}\left(C_{u / \chi} f\right)\right)=Q_{A}(f)
$$

It follows then from Lemma 2.3 that $A \in \mathcal{T}_{u}$.
For the general case $a \neq 0$ we use Lemma 2.4. The inner function $v=u \circ b_{-a}$ satisfies $v(0)=0$, and the unitary map ω_{a} defined in (2.2) yields by restriction unitary maps from K_{v} onto K_{u} and from $K_{v / \chi}$ to $K_{u / b_{a}}$ that intertwine the standard conjugations on these spaces. Therefore $\omega_{a} A \omega_{a}^{*}$ is C_{v}-symmetric, and its compression to $K_{v / \chi}$ is $C_{v / \chi}$-symmetric. By the first part of the proof, $\omega_{a} A \omega_{a}^{*} \in \mathcal{T}_{v}$. It follows from Lemma 2.4 that $A \in \mathcal{T}_{u}$.

We have thus proved a stronger version of the conjecture in case u has a zero in \mathbb{D} : an operator A on K_{u} is a truncated Toeplitz operator if and only if the complex symmetry condition is satisfied by A as well as by a single one of its compressions to model spaces.

4. Singular inner functions

Given a positive, singular Borel measure ν on \mathbb{T}, we denote by e_{ν} the corresponding singular inner function, that is,

$$
\begin{equation*}
e_{\nu}(z)=\exp \left(-\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \nu(\zeta)\right), \quad z \in \mathbb{D} \tag{4.1}
\end{equation*}
$$

Lemma 4.1. Let ν be a nonzero, positive, singular Borel measure on \mathbb{T}. Then there exist $\eta \in \mathbb{T}$ and a sequence of nonzero, positive Borel measures $\mu_{n} \leq \nu, n \in \mathbb{N}$, such that:
(i) $\lim _{n \rightarrow \infty} e_{\mu_{n}}(z)=1$ for every $z \in \mathbb{D}$, and
(ii) for every $g \in H^{2}$, the functions

$$
\frac{e_{\mu_{n}}-1}{\mu_{n}(\mathbb{T})}(\chi-\eta) g, \quad n \in \mathbb{N},
$$

converge weakly in H^{2} to $(\chi+\eta) g$ as $n \rightarrow \infty$.
Proof. Choose $\eta \in \mathbb{T}$ and a sequence $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of arcs in \mathbb{T}, symmetric about η, with length $\left|I_{n}\right|=1 / n$, such that $\lim _{n \rightarrow \infty}\left(\nu\left(I_{n}\right) /\left|I_{n}\right|\right)=+\infty$. This is possible since ν is singular. Define the measures μ_{n} by

$$
d \mu_{n}=\sqrt{\frac{\left|I_{n}\right|}{\nu\left(I_{n}\right)}} \chi_{I_{n}} d \nu, \quad n \in \mathbb{N}
$$

By the maximum modulus principle, condition (i) only needs to be verified at $z=0$, and this is immediate because $e_{\mu_{n}}(0)=e^{-\mu_{n}(\mathbb{T})}$. In fact, we have

$$
\lim _{n \rightarrow \infty} \frac{e_{\mu_{n}}(z)-1}{\mu_{n}(\mathbb{T})}=\frac{z+\eta}{z-\eta}, \quad z \in \mathbb{D}
$$

Lemma 2.2 shows that (ii) is true as well once we verify that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}, n \in \mathbb{N}}|z-\eta| \frac{\left|e_{\mu_{n}}(z)-1\right|}{\mu_{n}(\mathbb{T})}<\infty \tag{4.2}
\end{equation*}
$$

Observe first that, if $z \in \mathbb{D}$ and $|z-\eta|<10 / n=10\left|I_{n}\right|$,

$$
|z-\eta| \frac{\left|e_{\mu_{n}}(z)-1\right|}{\mu_{n}(\mathbb{T})} \leq \frac{20\left|I_{n}\right|}{\sqrt{\left|I_{n}\right| \nu\left(I_{n}\right)}}=20 \sqrt{\frac{\left|I_{n}\right|}{\nu\left(I_{n}\right)}}
$$

and the last quantity tends to 0 by the choice of I_{n}. If $|z-\eta| \geq 10 / n$, we use the inequalities

$$
\left|e^{\lambda}-1\right| \leq|\lambda| e^{|\lambda|}, \quad \lambda \in \mathbb{C}
$$

and

$$
\left|\frac{\zeta-z}{\zeta+z}\right|<3, \quad \zeta \in I_{n}, z \in \mathbb{D},|z-\zeta|>\frac{10}{n}
$$

to deduce that

$$
\left|e_{\mu_{n}}(z)-1\right| \leq 3 \mu_{n}(\mathbb{T}) e^{3 \mu_{n}(\mathbb{T})}
$$

For such values of z we see that

$$
|z-\eta| \frac{\left|e_{\mu_{n}}(z)-1\right|}{\mu_{n}(\mathbb{T})} \leq 6 e^{3 \mu_{n}(\mathbb{T})}<6 e^{3 \nu(\mathbb{T})} .
$$

This concludes the proof of the lemma.
We need one more technical result before establishing Conjecture 3.1 for $u=e_{\nu}$. Recall that K_{u}^{0} consists of those vectors $f \in K_{u}$ with the property that $S f$ also belongs to K_{u}. Clearly, $K_{v}^{0} \subset K_{u}^{0}$ if v is an inner divisor of u.
Lemma 4.2. Suppose that $u \in H^{\infty}$ is an inner function and $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of inner divisors of u such that u_{n+1} divides $u_{n}, n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty}\left|u_{n}(0)\right|=1$. Then $\bigcup_{n \in \mathbb{N}} K_{u / u_{n}}^{0}$ is dense in K_{u}^{0}.

Proof. We can, and do, assume without loss of generality that $u_{n}(0) \geq 0, n \in \mathbb{N}$. The least common inner multiple of the functions $\left\{u / u_{n}\right\}_{n \in \mathbb{N}}$ is equal to u, and thus $\bigcap_{n \in \mathbb{N}}\left(u / u_{n}\right) H^{2}=u H^{2}$ (see, for instance [1, Section 2.2]). It follows that $\bigcup_{n \in \mathbb{N}} K_{u / u_{n}}$ is dense in K_{u} and therefore the sequence $\left\{P_{u / u_{n}}\right\}_{n \in \mathbb{N}}$ converges to P_{u} in the strong operator topology.

It was noted earlier that the space $K_{u / u_{n}} \ominus K_{u / u_{n}}^{0}$ is generated by the vector $S^{*}\left(u / u_{n}\right)$. It follows from Lemma 2.2 that the sequence $\left\{u / u_{n}\right\}_{n \in \mathbb{N}}$ converges in the H^{2} norm to u, and thus $\lim _{n \rightarrow \infty} S^{*}\left(u / u_{n}\right)=S^{*} u$. If we denote by P_{n} and P the orthogonal projections onto the spaces $K_{u / u_{n}} \ominus K_{u / u_{n}}^{0}$ and $K_{u} \ominus K_{u}^{0}$, respectively, it follows that the sequence $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ converges to P in the strong operator topology. Given an arbitrary vector $f \in K_{u}^{0}$, we have $f_{n}=P_{u / u_{n}} f-P_{n} P_{u / u_{n}} f \in K_{u / u_{n}}^{0}$ and $\lim _{n \rightarrow \infty} f_{n}=f-P f=f$. The lemma follows.

We may now give the solution of the conjecture for singular inner functions.
Theorem 4.3. Suppose that ν is a positive, singular Borel measure on \mathbb{T}. Let A be an operator on $K_{e_{\nu}}$ that is, $C_{e_{\nu}}$-symmetric, and such that for every positive Borel measure $\mu \leq \nu$, the compression of A to $K_{e_{\mu}}$, is $C_{e_{\mu}}$-symmetric. Then $A \in \mathcal{T}_{e_{\nu}}$.

Proof. Let $\eta \in \mathbb{T}$ and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be as in Lemma 4.1. By Lemmas 2.1 and 4.2, it suffices to show that $Q_{A}(S f)=Q_{A}(f)$ for every $f \in \bigcup_{n \in \mathbb{N}} K_{e_{\mu} / e_{\mu_{n}}}^{0}$. Fix $n \in \mathbb{N}$, $f \in K_{e_{\nu} / e_{\mu_{n}}}^{0}$, and observe that then $(\chi-\eta) f \in K_{e_{\nu} / e_{\mu_{n}}}$. If $m \geq n$, we also have $e_{\mu_{m}} \mid e_{\mu_{n}}$ and $(\chi-\eta) f \in K_{e_{\nu} / e_{\mu_{m}}}$. Lemma 2.1 yields

$$
C_{e_{\nu}}\left(C_{e_{\nu} / e_{\mu_{m}}}((\chi-\eta) f)\right)=e_{\mu_{m}}(\chi-\eta) f .
$$

The complex symmetry of A and of its compression to $K_{e_{\nu} / e_{\mu_{m}}}$ shows that

$$
Q_{A}\left(e_{\mu_{m}}(\chi-\eta) f\right)=Q_{A}((\chi-\eta) f), \quad m \geq n,
$$

and therefore

$$
\begin{aligned}
& 0= \frac{1}{\mu_{m}(\mathbb{T})}\left(\left\langle A\left(e_{\mu_{m}}(\chi-\eta) f\right), e_{\mu_{m}}(\chi-\eta) f\right\rangle-\langle A((\chi-\eta) f),(\chi-\eta) f\rangle\right) \\
&=\left\langle\frac{e_{\mu_{m}}-1}{\mu_{m}(\mathbb{T})}(\chi-\eta) f, A^{*}\left(e_{\mu_{m}}(\chi-\eta) f\right)\right\rangle . \\
&+\left\langle A((\chi-\eta) f), \frac{e_{\mu_{m}}-1}{\mu_{m}(\mathbb{T})}(\chi-\eta) f\right\rangle .
\end{aligned}
$$

By Lemma 4.1(ii) $\left(1 / \mu_{m}(\mathbb{T})\right)\left(e_{\mu_{m}}-1\right)(\chi-\eta) f$ tends weakly in H^{2} to $(\chi+\eta) f$. On the other hand, $e_{\mu_{m}}(\chi-\eta) f$ tends pointwise on \mathbb{D} to $(\chi-\eta) f$ and $\left\|e_{\mu_{m}}(\chi-\eta) f\right\|=$ $\|(\chi-\eta) f\|$. By Lemma 2.2 $e_{\mu_{m}}(\chi-\eta) f$ tends to $(\chi-\eta) f$ in norm. We obtain then, by letting $m \rightarrow \infty$ in the last equality,

$$
\langle A((\chi+\eta) f),(\chi-\eta) f\rangle+\langle A((\chi-\eta) f),(\chi+\eta) f\rangle=0
$$

A simple calculation yields then $Q_{A}(S f)=Q_{A}(f)$, thereby concluding the proof.

We observe that the argument above only requires that A and its compressions to $K_{e_{\nu} / e_{\mu_{n}}}, n \in \mathbb{N}$, be complex symmetric.

References

[1] Hari Bercovici, Operator theory and arithmetic in H^{∞}, Mathematical Surveys and Monographs, vol. 26, American Mathematical Society, Providence, RI, 1988. MR 954383
[2] Joseph A. Cima, Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 (2010), no. 2, 595-620, DOI 10.1512/iumj.2010.59.4097. MR 2648079
[3] Joseph A. Cima, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices 2 (2008), no. 3, 357-369, DOI 10.7153/oam-02-21. MR2440673
[4] Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315, DOI 10.1090/S0002-9947-05-03742-6. MR 2187654
[5] Stephan Ramon Garcia and William T. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, Fields Inst. Commun., vol. 65, Springer, New York, 2013, pp. 275-319, DOI 10.1007/978-1-4614-5341-3_15. MR3052299
[6] Kamila Kliś-Garlicka, Bartosz Łanucha, and Marek Ptak, Characterization of truncated Toeplitz operators by conjugations, Oper. Matrices 11 (2017), no. 3, 807-822, DOI 10.7153/oam-11-57. MR3655687
[7] Donald Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1 (2007), no. 4, 491-526, DOI 10.7153/oam-01-29. MR2363975

Department of Mathematics, Indiana University, Bloomington, Indiana 47405
E-mail address: bercovic@indiana.edu
Simion Stoilow Institute of Mathematics, Romanian Academy, Calea Griviţei 21, Bucharest, Romania

E-mail address: dan.timotin@imar.ro

[^0]: Received by the editors February 3, 2017 and, in revised form, February 27, 2017.
 2010 Mathematics Subject Classification. Primary 47A45; Secondary 47B32, 47B35.
 The first author was supported in part by a grant of the National Science Foundation.

