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PROBABILISTIC WELL-POSEDNESS OF GENERALIZED KDV

GYEONGHA HWANG AND CHULKWANG KWAK

(Communicated by Catherine Sulem)

Abstract. We consider the Cauchy problem of the generalized Korteweg-
de Vries (gKdV) equation. We prove the local well-posedness of the mass
supercritical gKdV equations for the scaling supercritical regularity s < sc =
1
2
− 2

κ
in the sense of the probabilistic manner. The main ingredient is to

establish the probabilistic local smoothing estimate.

1. Introduction

In this paper, we consider the following generalized Korteweg-de Vries (gKdV)
equation: {

∂tu+ ∂3
xu+ F (u) = 0, (x, t) ∈ R× R,

u(0, x) = φ(x) ∈ Hs,
(1.1)

where F (u) = μuκ∂xu, κ ≥ 1 is an integer and μ = ±1.
By Duhamel’s formula, (1.1) is equivalent to the following integral equation:

(1.2) u = U(t)φ−
∫ t

0

U(t− t′)(μuκ(t′)∂xu(t
′)) dt′.

Here we define the linear solution U(t)f to the linear problem ∂tz + ∂3
xz = 0 with

an initial datum f . Then it is formally given by

U(t)f = F−1e−itξ3Ff = (2π)−1

∫
R

ei(x·ξ−tξ3)f̂(ξ) dξ,(1.3)

where f̂ = Ff denotes the Fourier transform of f such that f̂(ξ) =
∫
e−ix·ξf(x) dx

and we denote its inverse Fourier transform by F−1g(x) = (2π)−1
∫
eix·ξg(ξ) dξ.

The equation (1.1) admits the scaling symmetry under the transform

u(t, x) �→ uλ(t, x) := λ
2
κu(λ3t, λx)

for λ > 0 and this implies the scaling invariance for the initial data in Ḣ
1
2−

2
κ (R).

We denote this scaling critical exponent 1
2 − 2

κ by sc.
When κ = 1 or 2, we particularly call (1.1) KdV and modified KdV equations,

respectively. Those equations are very famous in various points of view and have
been widely studied by several researchers. See [10] and the references therein.
When κ = 4, we call (1.1) the mass-critical gKdV equation, and it was solved by
Kenig-Ponce-Vega [21] for local and (conditionally) global results, and by Dodson
[13] for the global result without any condition of the initial data.
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In the following, we only consider the mass-supercritical equations which are
of the cases when κ ≥ 5. The scaling sub-critical (s > sc) and critical (s = sc)
Cauchy problems of the gKdV equation (1.1) have already been studied by Kenig-
Ponce-Vega [21] (see also [15, 16, 31]). They showed local / (small data) global
well-posedness of (1.1) in Hs for s ≥ sc by taking appropriate norms to (1.3).

Theorem A (Theorem 2.15 – Corollary 2.18 in [21]). Let κ ≥ 5 and s ≥ sc. Then
for any φ ∈ Hs(R), there exists a unique strong solution u ∈ C([−T, T ];Hs(R)) of
(1.1). Moreover when the initial data is sufficiently small, then the solution can be
extended to T = ∞.

The main tool used in the proof of Theorem A is the local smoothing estimate.
Since (1.1) has one derivative in the nonlinear term, the smoothing effect is essential
to make the solution map as in (1.3) a contraction map. The local smoothing effect
is naturally inherent to the dispersive phenomenon of linear dispersive equations.
Kato [20] first showed that the solution of (1.1) possesses such a smoothing effect,
and Kenig-Ponce-Vega [21] developed and used it as the following form:

Lemma 1.1 (Theorem 3.5, Lemma 3.18 in [21]). Let (q, r) and α satisfy

(1.4)
2

q
+

1

r
=

1

2
, 4 ≤ q < ∞, 2 ≤ r < ∞, and α =

1

q
+

3

r
− 1

2
.

Then, we have
‖DαS(t)f‖Lq

xL
r
t
� ‖f‖L2

x
,

where Dα is a homogeneous fractional derivative with respect to the x variable.

Now we focus on the supercritical case. In the supercritical regime, many disper-
sive equations have been known to be ill-posed; see [9] and the references therein.
Nonetheless, putting the problem in stochastic perspective, some positive results
can be achieved. It was pioneered by Bourgain [4] and continued in Burq-Tzvetkov
[7,8], Colliander-Oh [11], Lührmann-Mendelson [24] and Bényi-Oh-Pocovinicu [1,2].
See also [6, 12, 14, 17–19, 25, 27, 29, 34]. For the gKdV equation on the periodic do-
main, probabilistic local and global well-posedness results have been established
below critical thresholds in [5,26,28,30]. In this article, we focus on a probabilistic
local well-posedness of the gKdV equation on the real line.

In the following, we briefly introduce the randomization φω of the initial data φ
of (1.1) as follows: Let ψ ∈ S(R) be a function satisfying

supp ψ ⊂ [−1, 1] and
∑
n∈Z

ψ(ξ − n) ≡ 1.

We define a pseudo-differential operator ψ(D − n) as a Fourier multiplier

ψ(D − n)u(x) = F−1ψ(ξ − n)Fu.

Then, for a given function f ∈ L2(R), we have

f =
∑
n∈Z

ψ(D − n)f.

Let {gn}n∈Z be a sequence of independent mean zero complex-valued random vari-
ables on a probability space (Ω,F ,P), where gn is independent and endowed with
a probability distribution μn. We assume there exists a constant c > 0 such that∣∣∣ ∫

R

eγxdμn

∣∣∣ ≤ ecγ
2

,(1.5)
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for all γ ∈ R, n ∈ Z. Now we define the Wiener randomization of f by

fω :=
∑
n∈Z

gn(ω)ψ(D − n)f.(1.6)

The main difficulty dealing with (1.1) comes from the one derivative in the
nonlinearity. To overcome it, we establish the probabilistic local smoothing (see
Proposition 2.4 below).

Remark 1.2. In the previous works (NLS, NLW, and so on) associated to the prob-
abilistic well-posedness theory, the main ingredient is the probabilistic Strichartz
estimate. It provides additional integrability to the randomization of initial data,
and hence it prevents a derivative loss coming from Sobolev embedding. In contrast
to previous works, the study on the KdV-type equations is highly dependent on
the local smoothing effect. However, the local smoothing norm has the opposite
order of Lebesgue spaces from the Strichartz norm, so additional integrability of
the local smoothing norm could not be obtained in a similar way. Nevertheless, we
can detect additional integrability from the probabilistic local smoothing estimate.

The following is the main result in this paper.

Theorem 1.3. Let κ ≥ 5, max( 1
κ+1 · (

1
2 −

2
κ ),

1
4 −

2
κ ) < s < 1

2 −
2
κ and φ ∈ Hs(R).

Consider the randomization φω defined as in (1.6) with a probability space (Ω,F , P )
satisfying the condition (1.5). Then (1.1) is almost surely locally well-posed in the
sense that there exist C, c, γ and σ(> sc) such that for each T � 1, there exists a
set ΩT ⊂ Ω with the following properties:

(1) P (Ω\ΩT ) ≤ C exp
(
− c

Tγ‖φ‖2
Hs

)
.

(2) For each ω ∈ ΩT , there exists a unique solution u ∈ C([0, T ];Hs(R)) to
(1.1) with initial data φω.

(3) The Duhamel part of the solution is smoother than initial data, i.e.,

u− U(t)φω ∈ C([0, T ];Hσ(R)).

Remark 1.4. The lower bound of s in Theorem 1.3 satisfies 1
κ+1 ·(

1
2−

2
κ ) < s < 1

2−
2
κ ,

if 5 ≤ κ ≤ 8, and 1
4 − 2

κ < s < 1
2 − 2

κ , otherwise.

The rest of the paper is organized as follows: In Section 2, we will introduce
several probabilistic estimates. In particular, we will establish the probabilistic
local smoothing estimate which is the most important tool in our analysis. In
Section 3, we will provide the definition of Xs,b space and also give basic properties
associated to this space. Finally, we will prove Theorem 1.3 in Section 4.

Notation. For x, y ∈ R+, x � y means that there exists C > 0 such that x ≤ Cy,
and x ∼ y means x � y and y � x.

2. Probabilistic estimates

In this section, we mainly establish the local smoothing estimate in the sense of
the probabilistic manner. First, we briefly review several well-known probabilistic
estimates. The first lemma is of the Khintchine inequality kind, which will be
essentially used to prove all probabilistic estimates.
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Lemma 2.1 (Lemma 3.1 in [7]). For given {cn} ∈ 2(Z) and p ≥ 2, there exists
C > 0 such that

‖
∑
n∈Z

gn(ω)cn‖Lp(Ω) ≤ C
√
p‖cn‖l2n(Z).

The next lemma is used to describe that the randomization does not make a given
function smoother, but it guarantees to almost surely keep the same regularity as
the original function.

Lemma 2.2 (Lemma 2.2 in [1]). Given f ∈ Hs(R), we have for any λ > 0,

P
(
‖fω‖Hs(R) > λ

)
≤ Ce−cλ2‖f‖−2

Hs .

We remark that the initial data φ and its randomization φω are still lain in the
supercritical Sobolev space, but this randomization makes the initial value problem
a sub-critical problem for a certain regularity σ. See Section 4.

Now we shall verify the probabilistic local smoothing estimate. For that purpose,
we recall the smoothing estimate on modulation space.

Lemma 2.3 (Lemma 6.2 in [35]). We have for 4 ≤ p ≤ ∞ and n ∈ Z that

‖ψ(D − n)U(t)f‖Lp
xL∞

t
� ‖ψ(D − n)f‖

Ḣ
1
p
.

Based on Lemma 2.3, we have the following probabilistic local smoothing estimate.

Proposition 2.4. Let (q, r) be a pair satisfying 2
q +

1
r ≤ 1

2 , 4 ≤ q < ∞, 2 ≤ r < ∞.

Then we have

P (‖D 2
r−

1
q U(t)fω‖Lq

xL
r
t (R×R) > λ) ≤ C exp(−cλ2‖f‖−2

L2 )

for all λ > 0. In particular, for any given small ε > 0, the following holds:

‖D 2
r−

1
q U(t)fω‖Lq

xL
r
t (R×R) � (log

1

ε
)

1
2 ‖f‖L2

outside a set of probability at most ε.

Proof. The proof is quite similar to the proof of the probabilistic Strichartz estimate
in [1,2]. Let p ≥ max(q, r). By using the Minkowski inequality and Lemma 2.1, we
obtain

(E‖D 2
r−

1
q U(t)fω‖p

Lq
xLr

t
)

1
p

≤
∥∥∥‖D 2

r−
1
q U(t)fω‖Lp(Ω)

∥∥∥
Lq

xLr
t

≤ √
p
∥∥∥‖D 2

r−
1
q ψ(D − n)U(t)f‖l2n

∥∥∥
Lq

xLr
t

≤ √
p
∥∥∥‖D 2

r−
1
q ψ(D − n)U(t)f‖Lq

xLr
t

∥∥∥
l2n

.

We interpolate Lq
xL

r
t between an L∞

x L2
t estimate in Lemma 1.1 and an Lp

xL
∞
t

estimate in Lemma 2.3 for an appropriate p ≥ 4 to obtain that

‖D 2
r−

1
qψ(D − n)U(t)f‖Lq

xLr
t
� ‖ψ(D − n)f‖L2

for each n ∈ Z. We note that the implicit constant does not depend on n ∈ Z. So
we have

(E‖D 2
r−

1
qU(t)fω‖p

Lq
xL

r
t
)

1
p � √

p
∥∥‖ψ(D − n)f‖L2

∥∥
l2n

∼ √
p‖f‖L2 .

Then Chebyshev’s inequality gives

P (‖D 2
r−

1
qU(t)fω‖Lq

xL
r
t
> λ) < (

C0p
1
2 ‖f‖L2

λ
)p.
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Let p0 = ( λ
C0e‖f‖L2

)2. If p0 ≥ 2, then we have from above that

P (‖D 2
r−

1
q U(t)fω‖Lq

xLr
t
> λ) < (

C0p
1
2
0 ‖f‖L2

λ
)p0 = e−p0 = exp(−cλ2‖f‖−2

L2 ).

Otherwise, we can choose C such that Ce−2 ≥ 1. Then we have

P (‖D 2
r−

1
q U(t)fω‖Lq

xLr
t
> λ) ≤ 1 ≤ Ce−2 ≤ C exp(−cλ2‖f‖−2

L2 ).

Therefore, we complete the proof of Proposition 2.4. �

3. Bourgain space

In this section, we introduce Xs,b space and its associated properties. We first
define Xs,b space as follows: For s, b ∈ R, Xs,b space is defined to be the closure of
Schwartz functions ϕ ∈ S(R× R) under the Xs,b-norm

‖ϕ‖Xs,b := ‖〈ξ〉s〈τ − ξ3〉bϕ̃(τ, ξ)‖L2(R×R),

where 〈a〉 = 1+ |a| and ϕ̃ denotes the time-space Fourier transform of ϕ. The Xs,b

space was first introduced in its form by Bourgain [3] in the context of periodic
nonlinear Schrödinger and gKdV equations, and has been developed by several
researchers [22, 32]. As is well known, Xs,b analysis is the most useful tool to
reflect the dispersive effect of linear and nonlinear dispersive phenomena. In what
follows we mention a few well-known properties of Xs,b space. Let η be a smooth
cutoff function supported on [−2, 2], η = 1 on [−1, 1], and let ηT (t) = η(t/T ). The
following lemma is the typical property (linear estimate) in the Xs,b analysis.

Lemma 3.1. Let T ∈ (0, 1) and b ∈
(
1
2 ,

3
2

]
. Then for s ∈ R and θ ∈

[
0, 3

2 − b
)
the

following hold:

‖ηT (t)U(t)f‖Xs,b(R×R) � T
1
2−b‖f‖Hs(R),

‖ηT (t)
∫ t

0

U(t− t′)ηT (t
′)F (t′)dt′‖Xs,b(R×R) � T θ‖F‖Xs,b−1+θ(R×R).

Proof. Readers can find several references for the proof. We refer particularly
Section 2.6 in [33]. �

The next lemma shows that Xs,b space is a suitable tool to detect the local
smoothing effect of linear KdV flow, and the proof follows immediately from Lemma
1.1 and Lemma 2.9 in [33].

Lemma 3.2. Let (q, r) and α satisfy (1.4). Then for b > 1
2 we have

(3.1) ‖Dαu‖Lq
xLr

t (R×R) � ‖u‖X0,b(R×R).

The starting point of the proof of the main proposition in the next section is the
duality argument. In order to complete our analysis, we need an Lq

xL
2
t estimate for

a test function in the duality argument. The following lemma gives such an Lq
xL

2
t

estimate.

Lemma 3.3. Let q ≥ 2. Then for b > 1
2 we have

‖D1− 1
q u‖Lq

xL
2
t
� ‖u‖

X
0,b(1− 2

q
)
(R×R)

.

Proof. It follows directly from the interpolation between (3.1) and the trivial esti-
mate ‖u‖L2

x,t
� ‖u‖X0,0 . We omit the detailed proof. �
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If one considers the interaction of two different frequency localized data, it is pos-
sible to get the improved version of the bilinear local smoothing estimate. Through-
out the paper we denote by A(N) the set {ξ : N/2 ≤ |ξ| ≤ 2N}.

Lemma 3.4 (Lemma 2.2 in [23]). Let d ≥ 2. Suppose that supp f̂ ⊂ A(N1) and
supp ĝ ⊂ A(N2) with N1 ≤ N2. Then,

‖DαU(t)fDαU(t)g‖
L

q
2
x L

r
2
t

�
(N1

N2

) 5θ
12 ‖f‖L2

x
‖g‖L2

x
,

where

−α+
1

q
+

3

r
=

1

2
, (

1

q
,
1

r
) = (

θ

6
+

1− θ

4
,
θ

6
), 0 ≤ θ ≤ 1.

In particular, we have

‖U(t)fU(t)g‖
L

5
2
x L5

t

�
(N1

N2

) 1
4 ‖f‖L2

x
‖g‖L2

x
.

The last lemma shows the Transference Principle of Xs,b space.

Lemma 3.5. Let d ≥ 2. Consider u, v ∈ X0,b for b > 1
2 . If supp û ⊂ A(N1) and

supp v̂ ⊂ A(N2) with N1 ≤ N2, then

‖uv‖
L

5
2
x L5

t

�
(N1

N2

) 1
4 ‖u‖X0,b‖v‖X0,b .

Proof. It is a multilinear version of Lemma 2.9 in [33]. Hence it follows from Lemma
3.4 above and Lemma 2.9 in [33]. �

4. Proof of the main theorem

In this section, we will give the proof of Theorem 1.3. We use (1.1) with initial
data φω. Let z(t) := U(t)φω and v(t) := u(t)− U(t)φω. Then (1.1) becomes{

∂tv + ∂3
xv + F (v + z) = 0,

v(0, x) = 0 ∈ Hs.
(4.1)

By Duhamel’s principle, (4.1) is written as an integral equation

v(t) = ηT (t)

∫ t

0

U(t− t′)ηT (t
′)F (ηT (t

′)v + ηT (t
′)z)(t′)dt′.

So we define D by

(4.2) Dv(t) = ηT (t)

∫ t

0

U(t− t′)ηT (t
′)F (ηT (t

′)v + ηT (t
′)z)(t′)dt′.

The main task is to show that the map D is a contraction on a certain ball in
Xσ,b for some σ > sc. The purpose of following proposition is to reduce Theorem
1.3.

Proposition 4.1. Let max( 1
κ+1 · ( 12 − 2

κ ),
1
4 − 2

κ ) < s < 1
2 − 2

κ . Given φ ∈ Hs, let

φω be its randomization. Then, there exist σ(> sc), b =
1
2+ and θ = 0+ such that

for each small T � 1 and R > 0, we have

‖Dv‖Xσ,b ≤ C1T
θ
(
‖v‖κ+1

Xσ,b +Rκ+1
)
,

‖Dv −Dw‖Xσ,b ≤ C2T
θ
(
‖v‖κXσ,b + ‖w‖κXσ,b +Rκ

)
‖v − w‖Xσ,b ,

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.
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We briefly sketch that Proposition 4.1 implies Theorem 1.3. We first assume to
hold Proposition 4.1. Let B1

∗ be a ball of Xσ,b given by

B1 = {v ∈ Xσ,b : ‖v‖Xσ,b ≤ 1}.
Then, for given 0 < T � 1, it suffices to show that the map D is a contraction on

B1. By choosing R = R(T ) ∼ T−β
κ for some β ∈ (0, κθ

κ+1 ) such that

C1T
θ(1 +Rκ+1) ≤ 1 and C2T

θ(2 +Rκ) ≤ 1

2
,

then, for v, w ∈ B1 and γ := 2β
κ , we have from Proposition 4.1 that

‖Dv‖Xσ,b ≤ 1,

‖Dv −Dw‖Xσ,b ≤ 1

2
‖v − w‖Xσ,b

outside a set of probability at most

C exp
(
− c

R2

‖φ‖2Hs

)
= C exp

(
− c

T γ‖φ‖2Hs

)
.

Hence, we can define a set ΩT as a complement of this set, and we can also find a
unique solution v for the initial data φω when ω ∈ ΩT . Therefore, we complete the
proof of Theorem 1.3.

Proof of Proposition 4.1. For given max( 1
κ+1 · ( 12 − 2

κ ),
1
4 − 2

κ ) < s < 1
2 − 2

κ , we

choose σ, ε and b̃ as follows:
(4.3)
1

2
− 3

2(κ− 1)
< σ < min

(
(κ+ 1)s, s+

1

4

)
,

0 < ε < min

(
1

2
(s+

1

4
− σ),

1

2
((κ+1)s−σ),

κ

3
(σ − (

1

2
− 2

κ
)), (κ−1)(σ−(

1

2
− 3

2(κ− 1)
)

)
,

1

2
< b̃ <

1

2(1− 2ε)
.

Let b := 1
κ+3 (

κ+4
2 − b̃(1 − 2ε)) and θ := b − 1

2 . We remark that b > 1
2 and

b̃(1 − 2ε) = 1 − b − (κ + 2)θ. We only prove the first estimate, since the second
estimate follows similarly. By using Lemma 3.1 and duality, we get

‖Dv(t)‖Xσ,b � T (κ+2)θ‖F (ηT v + ηT z)‖Xσ,b−1+(κ+2)θ

= T (κ+2)θ sup
‖v0‖X0,1−b−(κ+2)θ≤1

∣∣∣ ∫ ∫
R×R

〈D〉σ[F (ηT v + ηT z)]v0dxdt
∣∣∣.

In the following, we ignore μ in F (u), since it does not affect our analysis. Then

Hölder inequality and Lemma 3.3 (with b̃ as in (4.3)) yield∣∣∣ ∫ ∫
R×R

〈D〉σ∂x[(ηT v + ηT z)
κ+1]v0dxdt

∣∣∣
� ‖D2ε〈D〉σ(ηT v + ηT z)

κ+1‖
L

1
1−ε
x L2

t

‖D1−2εv0‖
L

1
ε
x L2

t

� ‖D2ε〈D〉σ(ηT v + ηT z)
κ+1‖

L
1

1−ε
x L2

t

‖v0‖X0,1−b−(κ+2)θ .

∗Since v is in the sub-critical regularity space, it is enough to consider B1 thanks to the
scaling-rescaling argument.
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First, we deal with ‖D2ε〈D〉σ(ηT v)κ+1‖
L

1
1−ε
x L2

t

. By using the fractional Leibniz

rule, the Hölder inequality and Lemma 3.2, we obtain

‖D2ε〈D〉σ(ηT v)κ+1‖
L

1
1−ε
x L2

t

�
κ∏

i=1

‖v‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖D2ε〈D〉σv‖
L

5
1−2ε
x L

10
1+8ε
t

�
κ∏

i=1

‖v‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖v‖Xσ,b .

Sobolev embedding and Lemma 3.2 give

‖v‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

� ‖D
κ−4+4ε

4κ v‖
L

20κ
5κ−4+8ε
x L

5κ
2−4ε
t

� ‖v‖Xσ,b ,

for σ > 1
2 − 3

2(κ−1) , 0 < ε < κ
3 (σ − ( 12 − 2

κ )).

In order to handle the remaining terms, we make a dyadic decomposition for v,
z. Hereafter we assume that the Fourier transforms of zi, vi are supported in a set
{ξ : |ξ| ∼ Ni}. Also, we drop the smooth cutoff function ηT from ηT vi and ηT zi,
and simply denote them by vi and zi, respectively. There exist two kinds of terms,
a z1 · · · zκ+1-term and a z1 · · · zjvj+1 · · · vκ+1-term.

Case 1. z1 · · · zκ+1-term.
We may assume N1 ≤ · · · ≤ Nκ+1.
We first consider the case of Nκ+1 ≤ 1. By using the fractional Leibniz rule, the

Hölder inequality and Lemma 3.2, we obtain

‖D2ε〈D〉σ(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

�
κ∏

i=1

‖zi‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖D2ε〈D〉σzκ+1‖
L

5
1−2ε
x L

10
1+8ε
t

�
κ∏

i=1

‖zi‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖zκ+1‖Xσ,b

∼
κ∏

i=1

‖zi‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖zκ+1‖X0,b .

Moreover, Sobolev embedding and Lemma 3.2 give

‖zi‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

� ‖D
κ−4+4ε

4κ zi‖
L

20κ
5κ−4+8ε
x L

5κ
2−4ε
t

� ‖zi‖Xσ,b ∼ ‖zi‖X0,b ,

for σ > 1
2 − 3

2(κ−1) , 0 < ε < κ
3 (σ − ( 12 − 2

κ )). Then sums over N1, · · · , Nκ+1 and

Lemma 3.1 give∑
Nκ+1≤1

· · ·
∑

0<N1≤N2

‖D2ε〈D〉σ(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

� T−(κ+1)θ‖φω‖κ+1
Hs .

Now, we focus on the case of Nκ+1 > 1. By using the fractional Leibniz rule and
the Hölder inequality, we have that

‖D2ε〈D〉σ(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

� ‖z1(D2ε〈D〉σzκ+1)‖
L

5
2
x L5

t

‖z2 · · · zκ‖
L

5
3−5ε
x L

10
3

t

� ‖z1(D2ε〈D〉σzκ+1)‖
L

5
2
x L5

t

κ∏
i=2

‖zi‖
L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.



PROBABILISTIC WELL-POSEDNESS OF GENERALIZED KDV 275

Lemma 3.5 and Lemma 3.1 give

‖z1(D2ε〈D〉σzκ+1)‖
L

5
2
x L5

t

� N
σ− 1

4−s+2ε
κ+1 N

1
4
1 ‖zκ+1‖Xs,b‖z1‖X0,b

� T−2θN
σ− 1

4−s+2ε
κ+1 N

1
4
1 ‖PNκ+1

φω‖Hs‖PN1
φω‖L2 .

If N1 > 1, we obtain

‖〈D〉σ+2ε(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

� T−2θN
σ− 1

4−s+2ε
κ+1 N

1
4−s
1 ‖PN1

φω‖Hs‖PNκ+1
φω‖Hs

×
κ∏

i=2

N
−s− ε

κ−1

i ‖D ε
κ−1 〈D〉szi‖

L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.

Since

0 < σ < (κ+ 1)s

and

0 < ε <
1

2
((κ+ 1)s− σ),

we have that N
σ− 1

4−s+2ε
κ+1 N

1
4−s
1

∏κ
i=2 N

−s− ε
κ−1

i is summable over 1 < N1 ≤ · · · ≤
Nκ+1. Hence we conclude from Lemma 2.2 and Proposition 2.4 that

‖〈D〉σ+2ε(ηT z)
κ+1‖

L
1

1−ε
x L2

t

� T−2θRκ+1

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

Otherwise, let κ̃ be a number such that Nκ̃ ≤ 1 and Nκ̃+1 > 1. Then we get

‖D2ε〈D〉σ(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

� T−2θN
σ− 1

4−s+2ε
κ+1 N

1
4
1 ‖PN1

φω‖L2‖PNκ+1
φω‖Hs

×
κ̃∏

i=2

N
− ε

κ−1

i ‖D ε
κ−1 zi‖

L
5(κ−1)
3−5ε

x L
10(κ−1)

3
t

κ∏
i=κ̃+1

N
−s− ε

κ−1

i ‖D ε
κ−1 〈D〉szi‖

L
5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.

By choosing appropriate σ and ε as 0 < σ < s + 1
4 and 0 < ε < 1

2 (s +
1
4 − σ), we

know that

N
1
4
1

κ̃∏
i=2

N
− ε

κ−1

i and N
σ− 1

4−s+2ε
κ+1

κ∏
i=κ̃+1

N
−s− ε

κ−1

i

are p-summable for any p ≥ 1 over 0 < N1 ≤ · · · ≤ Nκ̃ ≤ 1 and 1 < Nκ̃+1 ≤ · · · ≤
Nκ+1, respectively. Hence, we have
(4.4)

‖D2ε〈D〉σ(z1 · · · zκ+1)‖
L

1
1−ε
x L2

t

�
∑

0<N1≤···≤Nκ̃≤1<Nκ̃+1≤···≤Nκ+1

T−2θN
σ− 1

4−s+2ε
κ+1 N

1
4
1 ‖PN1

φω‖L2‖PNκ+1
φω‖Hs

×
κ̃∏

i=2

N
− ε

κ−1

i ‖D ε
κ−1 zi‖

L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

κ∏
i=κ̃+1

N
−s− ε

κ−1

i ‖D ε
κ−1 〈D〉szi‖

L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

� T−2θ‖φω‖L2‖φω‖Hs‖D ε
κ−1 z‖κ̃−1

L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

‖D ε
κ−1 〈D〉sz‖κ−κ̃

L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.
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In conclusion, from Lemma 2.2 and Proposition 2.4, we have

‖D2ε〈D〉σ(ηT z)κ+1‖
L

1
1−ε
x L2

t

� T−2θRκ+1

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

Case 2. z1 · · · zjvj+1 · · · vκ+1-term
We may assume N1 ≤ · · · ≤ Nj and Nj+1 ≤ · · · ≤ Nκ+1.
� Subcase 1: Nj ≤ Nκ+1

By using the Hölder inequality, we have

‖z1 · · · zjvj+1 · · · vκ(D2ε〈D〉σvκ+1)‖
L

1
1−ε
x L2

t

�
j∏

i1=1

‖zi1‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

κ∏
i2=j+1

‖vi2‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖D2ε〈D〉σvκ+1‖
L

5
1−2ε
x L

10
1+8ε
t

�
j∏

i1=1

‖zi1‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

κ∏
i2=j+1

‖vi2‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖vκ+1‖Xσ,b .

Let j̃ be a number such that N
˜j ≤ 1 and N

˜j+1 > 1. When i1 ≤ j̃, by using

Sobolev embedding, Lemma 3.2 and Lemma 3.1, we have

(4.5)
‖zi1‖

L
5κ

4−3ε
x L

5κ
2−4ε
t

� ‖D
κ−4+4ε

4κ zi1‖
L

20κ
5κ−4+8ε
x L

5κ
2−4ε
t

� ‖zi1‖Xσ,b

� T−θ‖PNi1
φω‖Hs .

Otherwise (i1 > j̃), we have from the Bernstein inequality that

(4.6) ‖zi1‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

� N
ε
κ−s
i1

‖D− ε
κ 〈D〉szi1‖

L
5κ

4−3ε
x L

5κ
2−4ε
t

.

We note that N
ε
κ−s
i1

is summable over Ni1 > 1.

For vi2 , since
1
2 − 2

κ + 3ε
κ < σ, we always have from Lemma 3.2 that

(4.7) ‖vi2‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

� ‖D
κ−4+4ε

4κ vi2‖
L

20κ
5κ−4+8ε
x L

5κ
2−4ε
t

� ‖vi2‖Xσ,b .

Then, we carry out summations of (4.5), (4.6) and (4.7) and apply Lemma 2.2
and Proposition 2.4 to get

∑
‖z1 · · · zjvj+1 · · · vκ〈D〉σ+2εvκ+1‖

L
1

1−ε
x L2

t

� T−˜jθRj‖v‖κ+1−j
Xσ,b

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

� Subcase 2: Nj ≥ Nκ+1

We first consider the case of Nj ≤ 1. In this case, since there is no effect of
derivatives D2ε〈D〉σ, by using the fractional Leibniz rule, the Hölder inequality,
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Lemma 3.2, (4.5) and (4.7), we obtain

‖z1 · · · zj−1(D
2ε〈D〉σzj)vj+1 · · · vκ+1‖

L
1

1−ε
x L2

t

�
j−1∏
i1=1

‖zi1‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖D2ε〈D〉σzj‖
L

5
1−2ε
x L

10
1+8ε
t

κ+1∏
i2=j+1

‖vi2‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

�
j−1∏
i1=1

‖zi1‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

‖zj‖X0,b

κ+1∏
i2=j+1

‖vi2‖
L

5κ
4−3ε
x L

5κ
2−4ε
t

.

Then, we carry out summations and apply Lemma 2.2 and Proposition 2.4 to get∑
‖z1 · · · zj−1(D

2ε〈D〉σzj)vj+1 · · · vκ+1‖
L

1
1−ε
x L2

t

� T−jθRj‖v‖κ+1−j
Xσ,b

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

Now in what follows, we assume Nj > 1. We consider two cases separately:

• j ≥ 2.
• j = 1.

When j ≥ 2, by using the Hölder inequality, we get

‖z1 · · · zj−1(D
2ε〈D〉σzj)vj+1 · · · vκ+1‖

L
1

1−ε
x L2

t

� ‖z1(D2ε〈D〉σzj)‖
L

5
2
x L5

t

j−1∏
i1=2

‖zi1‖
L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

κ+1∏
i2=j+1

‖vi2‖
L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.

From Sobolev embedding and Lemma 3.2, we know that

(4.8) ‖vi2‖
L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

� ‖D
κ−4+4ε
4(κ−1) vi2‖

L

20(κ−1)
5κ−8

x L
10(κ−1)

3
t

� ‖vi2‖Xσ,b

for σ > 1
2 −

3
2(κ−1) and 0 < ε < (κ−1)(σ−( 12 −

3
2(κ−1)). In addition to (4.8), we use

similar argument as in (4.4) for ‖z1(D2ε〈D〉σzj)‖
L

5
2
x L5

t

∏j−1
i1=1 ‖zi2‖

L
5(κ−1)
3−5ε

x L
10(κ−1)

3
t

to

obtain that

‖z1 · · · zj−1(D
2ε〈D〉σzj)vj+1 · · · vκ+1‖

L
1

1−ε
x L2

t

� T−2θRj‖v‖κ+1−j
Xσ,b

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

When j = 1, from the Hölder inequality, we get

‖(D2ε〈D〉σz1)v2 · · · vκ+1‖
L

1
1−ε
x L2

t

� ‖vκ+1(D
2ε〈D〉σz1)‖

L
5
2
x L5

t

κ+1∏
i2=2

‖vi2‖
L

5(κ−1)
3−5ε

x L
10(κ−1)

3
t

.

Lemma 3.5 and Lemma 3.1 give

‖vκ+1(D
2ε〈D〉σz1)‖

L
5
2
x L5

t

� N
σ− 1

4−s+2ε
1 N

1
4
κ+1‖z1‖Xs,b‖vκ+1‖X0,b

� T−θN
σ− 1

4−s+2ε
1 N

1
4
κ+1‖PN1

φω‖Hs‖vκ+1‖X0,b .
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When Nκ+1 ≤ 1, thanks to the conditions of σ and ε as 0 < σ < 1
4 + s and

0 ≤ ε ≤ 1
2 (s+

1
4 − σ), we have∑

Nκ+1≤1

∑
1≤N1

‖vκ+1(D
2ε〈D〉σz1)‖

L
5
2
x L5

t

� T−θ‖φω‖Hs‖v‖Xσ,b .

Otherwise (Nκ+1 > 1), since we have further derivative gain (N−σ
κ+1), we also obtain∑

1<Nκ+1

∑
Nκ+1≤N1

‖vκ+1(D
2ε〈D〉σz1)‖

L
5
2
x L5

t

�
∑

1<Nκ+1

∑
Nκ+1≤N1

T−θN
σ− 1

4−s+2ε
1 N

1
4−σ
κ+1 ‖PN1

φω‖Hs‖vκ+1‖Xσ,b

� T−θ‖φω‖Hs‖v‖Xσ,b

for σ < s + 1
4 and 0 < ε < 1

2 (s +
1
4 − σ). Then, similarly to the case when j ≥ 2,

we have from (4.8) and the same argument as in (4.4) that∑
‖z1 · · · zj−1(D

2ε〈D〉σzj)vj+1 · · · vκ+1‖
L

1
1−ε
x L2

t

� T−2θRj‖v‖κ+1−j
Xσ,b

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
. This completes the proof

of Proposition 4.1. �
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