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WELL-COVERED AND BIPARTITE GRAPHS
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Abstract. Let G be a graph with n vertices and S = K[x1, . . . , xn] be the
polynomial ring in n variables over a field K. Assume that J(G) is the cover

ideal of G and J(G)(k) is its k-th symbolic power. We show that if G is a
very well-covered graph such that J(G) has a linear resolution, then for every

integer k ≥ 1, the ideal J(G)(k) has a linear resolution and moreover, the

modules J(G)(k) and S/J(G)(k) satisfy Stanley’s inequality, i.e., their Stanley
depth is an upper bound for their depth. Finally, we determine a linear upper
bound for the Castelnuovo–Mumford regularity of powers of cover ideals of
bipartite graphs.

1. Introduction

Over the last 25 years the study of algebraic, homological and combinatorial
properties of powers of ideals has been one of the major topics in Commutative
Algebra. In this paper we study the minimal free resolution of the powers of cover
ideals of graphs. The cover ideal of a graph is the Alexander dual of its edge ideal
and has been studied by several authors (see, e.g., [4], [6], [13], [14], [27]).

In Section 3, we study the minimal free resolution of symbolic powers of cover
ideals of very well-covered graphs. A graph G is said to be very well-covered
if the cardinality of every maximal independent set of G is half the number of
vertices of G. The family of very well-covered graphs includes all the unmixed
bipartite graphs, which have no isolated vertex. Further interest comes from a
complete combinatorial characterization of Cohen–Macaulayness in this case. This
class of graphs is studied from the algebraic point of view in [2], [8], [25] [26].
Let G be a graph with n vertices and S = K[x1, . . . , xn] be the polynomial ring
in n variables over a field K. Assume that J(G) is the cover ideal of G. The
first main result of Section 3 determines a class of monomial ideals, such that all
symbolic powers of an ideal in this class have a linear resolution. In fact, there
are many attempts to characterize the monomial ideals with a linear resolution.
One of the most important results in this direction is due to Fröberg [15, Theo-
rem 1], who characterized all squarefree monomial ideals generated by quadratic
monomials, which have a linear resolution. It is also known [23] that polyma-
troidal ideals have a linear resolution and that powers of polymatroidal ideals
are again polymatroidal (see [20]). In particular they have again a linear reso-
lution. In general, however, powers of ideals with a linear resolution need not have
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a linear resolution. The first example of such an ideal was given by Terai. He
showed that over a base field of characteristic �= 2 the Stanley Reisner ideal I =
(x1x2x3, x1x2x5, x1x3x6, x1x4x5, x1x4x6, x2x3x4, x2x4x6, x2x5x6, x3x4x5, x3x5x6)
of the minimal triangulation of the projective plane has a linear resolution, while I2

does not have a linear resolution. This example depends on the characteristic of the
base field. If the base field has characteristic 2, then I itself does not have a linear
resolution. Another example, namely I = (x4x5x6, x3x5x6, x3x4x6, x3x4x5, x2x5x6,
x2x3x4, x1x3x6, x1x4x5) is given by Sturmfels [35]. Again I has a linear resolution,
while I2 does not have a linear resolution. However, Herzog, Hibi and Zheng [22]
prove that a monomial ideal I generated in degree 2 has a linear resolution if and
only if every power of I has a linear resolution. Also, it follows from [28, Theorem
2.2] that if G is a bipartite graph such that J(G) has a linear resolution, then every
power of J(G) has a linear resolution too. Our Theorem 3.6 is a generalization of
this result and asserts that if G is a very well-covered graph, such that J(G) has
a linear resolution, then for every integer k ≥ 1, the k-th symbolic power of J(G),
denoted by J(G)(k), has a linear resolution and even more, it has linear quotients.
In order to prove this result, in Proposition 3.1, we introduce a construction to ob-
tain a Cohen–Macaulay very well-covered graph from a given Cohen–Macaulay very
well-covered graph. We will see that the cover ideal of the resulting graph is related
to the symbolic powers of the cover ideal of the primary graph, via polarization.
In Corollary 3.7, we prove that the converse of Theorem 3.6 is true for bipartite
graphs. In other words, for a bipartite graph G, the cover ideal J(G) has a linear
resolution if and only if J(G)(k) has a linear resolution for some integer k ≥ 1.
Next, in Corollary 3.8, we prove that if G is a very well-covered graph such that
J(G) has a linear resolution, then for every integer k ≥ 1, the modules J(G)(k) and
S/J(G)(k) satisfy Stanley’s inequality, i.e., their Stanley depth is an upper bound
for their depth. In the proof of Corollary 3.8, we use the result obtained in [26],
which states that for very well-covered graphs the notions of Cohen–Macaulayness
and vertex decomposability are the same.

Computing and finding bounds for the regularity of powers of a monomial ideal
have been studied by a number of researchers (see for example [1], [3], [5], [18]). It
follows from [9, Theorem 1.1] that reg(Is) is asymptotically a linear function for
s � 0. However, it is usually difficult to compute this linear function or estimate
it. In Section 4, we study the regularity of (ordinary) powers of cover ideals of a
bipartite graph (note that by [16, Corollary 2.6], for the cover ideal of bipartite
graphs the ordinary and symbolic powers coincide). In Theorem 4.3, we determine
a linear upper bound for the regularity of these ideals. More explicit, we prove that
for a bipartite graph G and every integer k ≥ 1, the regularity of S/J(G)k is at
most kdeg(J(G)) + reg(S/J(G))− 1, where for a monomial ideal I, we denote the
maximum degree of minimal monomial generators of I by deg(I).

2. Preliminaries

In this section, we provide the definitions and basic facts which will be used in
the next sections. We refer the reader to [20] for undefined terminology.

Let G be a simple graph with vertex set V (G) =
{
x1, . . . , xn

}
and edge set

E(G) (by abusing the notation, we identify the vertices of G with the variables of
S). For a vertex xi, the neighbor set of xi is NG(xi) = {xj | {xi, xj} ∈ E(G)}
and we set NG[xi] = NG(xi) ∪ {xi} and call it the closed neighborhood of xi. For
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a subset F ⊆ V (G), we set NG[F ] =
⋃

xi∈F NG[xi]. For every subset A ⊂ V (G),

the graph G \ A is the graph with vertex set V (G \ A) = V (G) \ A and edge set
E(G \A) = {e ∈ E(G) | e∩A = ∅}. A subgraph H of G is called induced provided
that two vertices of H are adjacent if and only if they are adjacent in G. A matching
in a graph G is a subgraph consisting of pairwise disjoint edges. If the subgraph is
an induced subgraph, the matching is an induced matching. The cardinality of the
maximum induced matching of G is denoted by indmatch(G). A perfect matching
in G is a matching whose vertex set is the same as V (G). A subset W of V (G)
is called an independent subset of G if there are no edges among the vertices of
W . The graph G is said to be very well-covered if n is an even number and every
maximal independent subset of G has cardinality n/2.

A simplicial complex Δ on the set of vertices V (Δ) = {v1, . . . , vn} is a collection
of subsets of V (Δ) which is closed under taking subsets; that is, if F ∈ Δ and
F ′ ⊆ F , then also F ′ ∈ Δ. Every element F ∈ Δ is called a face of Δ, and its
dimension is defined to be |F |−1. The dimension of Δ which is denoted by dimΔ,
is d − 1, where d = max{|F | | F ∈ Δ}. A facet of Δ is a maximal face of Δ
with respect to inclusion. Let F(Δ) denote the set of facets of Δ. It is clear that
F(Δ) determines Δ. When F(Δ) = {F1, . . . , Fm}, we write Δ = 〈F1, . . . , Fm〉. We
say that Δ is pure if all facets of Δ have the same cardinality. For every subset
F ⊆ V (Δ), we set xF =

∏
vi∈F xi. The Stanley–Reisner ideal of Δ over K is the

ideal IΔ of S which is generated by those squarefree monomials xF with F /∈ Δ. The
Stanley–Reisner ring of Δ over K, denoted by K[Δ], is defined to be K[Δ] = S/IΔ.

Let G be a graph. Independence simplicial complex of G is defined by

Δ(G) = {A ⊆ V (G) | A is an independent set in G}.

Note that the Stanley–Reisner ideal of Δ(G) is the edge ideal of G which is defined
to be

I(G) = (xixj | {x1, xj} ∈ E(G)) ⊂ S.

A subset C of V (G) is called a vertex cover of the graph G if every edge of G is
incident to at least one vertex of C. A vertex cover C is called a minimal vertex
cover of G if no proper subset of C is a vertex cover of G. Note that C is a minimal
vertex cover if and only if V (G) \ C is a maximal independent set, that is, a facet
of Δ(G). A graph G is called unmixed if all minimal vertex covers of G have the
same number of elements. Hence G is an unmixed graph if and only if Δ(G) is a
pure simplicial complex. The size of the smallest vertex cover of G will be denoted
by τ (G). The Alexander dual of the edge ideal of G in S, i.e., the ideal

J(G) = I(G)∨ =
⋂

{xi,xj}∈E(G)

(xi, xj),

is called the cover ideal of G and is the main object of study in this paper. The
reason for this name is due to the well-known fact that the generators of J(G)
correspond to minimal vertex covers of G.

Definition 2.1. Let I be an ideal of S and Min(I) denote the set of minimal
prime of I. For every integer k ≥ 1, the k-th symbolic power of I, denoted by I(k),
is defined to be

I(k) =
⋂

P∈Min(I)

Ker(R → (R/Ik)P ).
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Let I be a squarefree monomial ideal in S and suppose that I has the irredundant
primary decomposition

I = p1 ∩ . . . ∩ pr,

where every pi is an ideal of S generated by a subset of the variables of S. It follows
from [20, Proposition 1.4.4] that for every integer k ≥ 1,

I(k) = pk1 ∩ . . . ∩ pkr .

For a graded S-moduleM , we denote the graded Betti numbers ofM by βi,j(M).
The Castelnuovo–Mumford regularity (or simply, regularity) of M , denoted by
reg(M), is defined as follows:

reg(M) = max{j − i| βi,j(M) �= 0}.

The moduleM is said to have a linear resolution, if for some integer d, βi,i+t(M) = 0
for all i and every t �= d. It is clear from the definition that if an ideal has a linear
resolution, then all the minimal generators of I have the same degree. Next, we
recall the definition of monomial ideals with linear quotients. We recall that for
a monomial ideal I, the set of minimal monomial generators of I is denoted by
Gens(I).

Definition 2.2 ([23]). Let I be a monomial ideal. Assume that u1 ≺ u2 ≺ . . . ≺ um

is a linear order on Gens(I). We say that I has linear quotients with respect to ≺,
if for every 2 ≤ i ≤ m, the ideal (u1, . . . , ui−1) : ui is generated by a subset of the
variables. We say that I has linear quotients, if it has linear quotients with respect
to a linear order on Gens(I).

By [20, Proposition 8.2.1], we know that if I is a monomial ideal which is gener-
ated in a single degree and has linear quotients, then it admits a linear resolution.
Monomial ideals with linear quotients are related to an important class of simplicial
complexes, namely shellable simplicial complexes.

Definition 2.3. A simplicial complex Δ is called shellable if its facets can be
arranged in linear order F1, F2, . . . , Ft in such a way that the subcomplex
〈F1, . . . , Fk−1〉∩〈Fk〉 is pure and has dimension dimFk−1 for every k with 2 ≤ k ≤ t.

By [20, Theorem 8.2.5], a simplicial complex Δ is shellable if and only if IΔ∨

has linear quotients, where Δ∨ is the Alexander dual of Δ. A simplicial complex
Δ is called Cohen–Macaulay over K if its Stanley–Reisner ring K[Δ] is a Cohen–
Macaulay ring. In this paper, we fix a field K. When we say that a simplicial
complex Δ is Cohen–Macaulay without qualification, we implicitly mean that Δ
is Cohen–Macaulay over K. A fundamental result in combinatorial commutative
algebra says that a pure shellabe simplicial complex is Cohen–Macaulay (over any
field K). Also, it follows from the Eagon–Reiner theorem [20, Theorem 8.1.9], that
a simplicial complex Δ is Cohen–Macaulay if and only if IΔ∨ has a linear resolution.

Let Δ be a simplicial complex. The link of Δ with respect to a face F ∈ Δ,
denoted by lkΔ(F ), is the simplicial complex lkΔ(F ) = {G ⊆ [n] \ F | G ∪ F ∈ Δ}
and the deletion of F , denoted by delΔ(F ), is the complex delΔ(F ) = {G ⊆ [n]\F |
G ∈ Δ}. When F = {x} is a single vertex, we abuse notation and write lkΔ(x)
and delΔ(x). We are now ready to define vertex decomposable simplicial complexes
which will be used in the proof of Corollary 3.8.
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Definition 2.4. Let Δ be a simplicial complex. Then we say that Δ is vertex
decomposable if either

(1) Δ is a simplex, or

(2) Δ has a vertex x such that delΔ(x) and lkΔ(x) are vertex decomposable
and every facet of delΔ(x) is a facet of Δ.

A graph G is called Cohen–Macaulay/shellable/vertex decomposable if Δ(G) has
the same property. Thus, the graph G is Cohen–Macaulay if and only if J(G) has a
linear resolution and it is shellable if and only if J(G) has linear quotients. We know
from [26, Theorem 1.1] (see also [7, Theorem 2.3]) that for very well-covered graphs,
the concepts of Cohen–Macaulayness, shellability and vertex decomposability are
equivalent.

3. Very well-covered graphs

The aim of this section is to study the minimal free resolution of symbolic powers
of cover ideals of very well-covered graphs. Before stating our results, we notice that
if G is not a bipartite graph, then there is an integer k ≥ 1, for which J(G)(k) �=
J(G)k (see [21, Theorem 5.1]).

As the first result of this section, we prove in Theorem 3.6 that if G is a very
well-covered graph such that J(G) has a linear resolution, then every symbolic
power J(G)(k) has a linear resolution too. Notice that if G is not a bipartite graph,
then there is an integer k ≥ 1, for which J(G)(k) �= J(G)k. In order to prove this
result, we introduce a construction to obtain a Cohen–Macaulay very well-covered
graph from a given Cohen–Macaulay very well-covered graph. In the following
construction, for every graph G and every integer k ≥ 1, we build a new graph
Gk whose cover ideal is strongly related to the k-th symbolic power of J(G) (see
Lemma 3.4).

Construction. Let G be a graph with vertex set V (G) = {x1, . . . , xn} and let
k ≥ 1 be an integer. We define the new graph Gk on new vertices

V (Gk) = {xi,p | 1 ≤ i ≤ n and 1 ≤ p ≤ k},

(thus Gk has nk vertices) and the edge set of Gk is

E(Gk) = {{xi,p, xj,q} | {xi, xj} ∈ E(G) and p+ q ≤ k + 1}.

Proposition 3.1. Let G be a graph without isolated vertices and k ≥ 1 be an
integer.

(a) If G is very well-covered, then Gk is very well-covered too.
(b) If G is Cohen–Macaulay and very well-covered, then Gk is Cohen–Macaulay

too.

Proof. Since G is very well-covered, n = |V (G)| is an even integer. Set h = n/2.
By [26, Lemma 4.1] and [8, Proposition 2.3], the vertices of G can be relabeled, say
V (G) = {w1, . . . , wh, z1, . . . , zh} such that

(i) {w1, . . . , wh} is a minimal vertex cover of G and {z1, . . . , zh} is a maximal
independent set of G;

(ii) {w1, z1}, . . . , {wh, zh} ∈ E(G);
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(iii) if {yi, wj}, {zj , wl} ∈ E(G), then {yi, wl} ∈ E(G) for distinct i, j, l and for
yi ∈ {wi, zi};

(iv) if {wi, zj} ∈ E(G), then {wi, wj} /∈ E(G).

We rename the vertices of Gk as follows:

a1 := w1,1, a2 := w2,1, . . . , ah := wh,1, ah+1 := w1,2, . . . , a2h := wh,2, . . . , akh := wh,k,

b1 := z1,k, b2 := z2,k, . . . , bh := zh,k, bh+1 := z1,k−1, . . . , b2h := zh,k−1, . . . , bkh := zh,1.

It is clear from (i) and the construction of Gk that {a1, a2, . . . , akh} is a minimal
vertex cover of Gk and {b1, b2, . . . , bkh} is a maximal independent set of Gk. This
shows that τ (Gk) ≤ kh. Also, it follows from (ii) that {{a1, b1}, . . . , {akh, bkh}} is a
perfect matching of Gk. Therefore τ (Gk) = kh. This implies that ht(I(Gk)) = kh.

Assume that i, j, l are distinct integers with 1 ≤ i, j, l ≤ kh. Then there exist
integers m, p, q, r, s, t such that ai = wm,p, bi = zm,k+1−p, aj = wq,r, bj = zq,k+1−r

and al = ws,t. We continue the proof in several steps.

Step 1. If {ai, aj}, {bj , al} ∈ E(Gk), then {ai, al} ∈ E(Gk).

Proof. It follows from the assumptions that {wm, wq}, {ws, zq} ∈ E(G), p+r ≤ k+1
and k+1− r+ t ≤ k+1. Hence, p+ t = (p+ r) + (k+1− r+ t)− (k+1) ≤ k+1.
Since {wm, wq} ∈ E(G), we conclude that m �= q. It also follows from (iv) that
s �= m. If s = q, then {wm, ws} = {wm, wq} ∈ E(G). Thus, {ai, al} is an edge of
Gk. If s �= q, then it follows from (iii) that {wm, ws} is an edge of G. Thus, again
{ai, al} ∈ E(Gk). �

Step 2. If {bi, aj}, {bj , al} ∈ E(Gk), then {bi, al} ∈ E(Gk).

Proof. It follows from the assumptions that {zm, wq}, {ws, zq} ∈ E(G), k+1− p+
r ≤ k+1 and k+1−r+ t ≤ k+1. Hence, (k+1−p)+ t = (k+1−p+r)+(k+1−
r+ t)− (k+1) ≤ k+1. If s = q, then it follows from {zm, ws} = {zm, wq} ∈ E(G)
that {bi, al} ∈ E(Gk). Therefore, assume that s �= q. Similarly, we can assume
that m �= q. If s = m, it follows from (ii) that {zm, ws} = {zm, wm} ∈ E(G),
which implies that {bi, al} ∈ E(Gk). Thus, suppose that s �= m. Hence, m, q
and s are distinct. Then (iii) implies that {zm, ws} is an edge of G. Thus, again
{bi, al} ∈ E(Gk). �

Step 3. If {ai, bj} ∈ E(Gk), then {wm, zq} ∈ E(G) and it follows from (iv) that
{wm, wq} /∈ E(G). Thus, {ai, aj} /∈ E(Gk). �

Now, Steps 1, 2, 3 and [29, Theorem 2.9] (see also [8, Proposition 2.3]) imply
that G is unmixed and since ht(I(Gk)) = kh = |V (G)|/2, we conclude that Gk is a
very well-covered graph.

Next assume that G is a Cohen–Macaulay very well-covered graph. By [26,
Lemma 3.1] there is a relabeling for the vertices of G which satisfies conditions
(i)-(iv), mentioned above and the following condition:

(v) If {wi, zj} ∈ E(G), then i ≤ j.

Step 4. If {ai, bj} ∈ E(Gk), then i ≤ j.

Proof. It follows from the assumption that {wm, zq} ∈ E(G) and p+ (k+ 1− r) ≤
k + 1. Thus p ≤ r and it follows from (v) that m ≤ q. Therefore i ≤ j.

Finally, it follows from Steps 1, 2, 3, 4 and [26, Lemma 3.1] that Gk is Cohen–
Macaulay. �
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Remark 3.2. Although we proved in Proposition 3.1 that for every very well-covered
graph G, the graph Gk is also a very well-covered graph, but it is not in general true
that Gk is unmixed if G is. For example, let G = K3 be the complete graph with
three vertices. Then G is unmixed (even Cohen–Macaulay) but G2 is not unmixed.

We next recall the definition of polarization. It is a very useful machinery to
convert a monomial ideal to a squarefree one.

Definition 3.3. Let I be a monomial ideal of S = K[x1, . . . , xn] with minimal
generators u1, . . . , um, where uj =

∏n
i=1 x

ai,j

i , 1 ≤ j ≤ m. For every i with 1 ≤ i ≤
n, let ai = max{ai,j | 1 ≤ j ≤ m}, and suppose that

T = K[x1,1, x1,2, . . . , x1,a1
, x2,1, x2,2, . . . , x2,a2

, . . . , xn,1, xn,2, . . . , xn,an
]

is a polynomial ring over the field K. Let Ipol be the squarefree monomial ideal of

T with minimal generators upol
1 , . . . , upol

m , where upol
j =

∏n
i=1

∏ai,j

k=1 xi,k, 1 ≤ j ≤ m.

The monomial upol
j is called the polarization of uj , and the ideal Ipol is called the

polarization of I.

As we mentioned at the beginning of this section, for every graph G and every
integer k ≥ 1, the cover ideal of Gk is related to the k-th symbolic power of the
cover ideal of G. This is the content of the following lemma.

Lemma 3.4. Let G be a graph. For every integer k ≥ 1, the ideal (J(G)(k))pol is
the cover ideal of Gk.

Proof. We know that polarization commutes with the intersection (see [12, Propo-
sition 2.3]). Therefore,

(J(G)(k))pol =
⋂

{xi,xj}∈E(G)

((xi, xj)
k)pol.

Moreover, by [12, Proposition 2.5], it holds that

((xi, xj)
k)pol =

⋂

p+q≤k+1

(xi,p, xj,q).

Thus,

(J(G)(k))pol =
⋂

{xi,xj}∈E(G)

⋂

p+q≤k+1

(xi,p, xj,q).

Therefore, (J(G)(k))pol is the cover ideal of Gk. �
We know from [20, Corollary 1.6.3] that polarization preserves the graded Betti

numbers. Thus a monomial ideal has a linear resolution if and only if its polarization
has a linear resolution. In the following lemma, we show that a similar statement
is true if one replaces the linear resolution by linear quotients.

Lemma 3.5. A monomial ideal I has linear quotients if and only if Ipol has linear
quotients.

Proof. We use the notation of Definition 3.3.
(⇒) By [20, Lemma 8.2.3], the elements of Gens(I) can be ordered u1, . . . , um

such that for every pair of integers j < i there exist an integer k < i and a variable
xp such that

uk

gcd(uk, ui)
= xp and xp divides

uj

gcd(uj , ui)
.



104 S. A. SEYED FAKHARI

Let t be the largest integer with xt
p|ui. It follows from the equality

uk

gcd(uk, ui)
= xp

that xt+1
p |uk and xt+2

p � uk, Therefore

upol
k

gcd(upol
k , upol

i )
= xp,t+1.

On the other hand, xp divides
uj

gcd(uj , ui)

by the choice of t; we conclude that xt+1
p |uj . This shows that xp,t+1 divides

upol
j

gcd(upol
j , upol

i )
.

It again follows from [20, Lemma 8.2.3] that Ipol has linear quotients.

(⇐) By [20, Lemma 8.2.3], the elements of G(Ipol) can be ordered upol
1 , . . . , upol

m

such that for every pair of integers j < i there exist an integer k < i and a variable
xp,q ∈ T such that

upol
k

gcd(upol
k , upol

i )
= xp,q and xp,q divides

upol
j

gcd(upol
j , upol

i )
.

This shows that
uk

gcd(uk, ui)
= xp and xp divides

uj

gcd(uj , ui)
,

and hence, I has linear quotients. �

We are now ready to prove the first main result of this section.

Theorem 3.6. Let G be a very well-covered graph and suppose that its cover ideal
J(G) has a linear resolution. Then

(i) J(G)(k) has a linear resolution, for every integer k ≥ 1.
(ii) J(G)(k) has linear quotients, for every integer k ≥ 1.

Proof. Since the isolated vertices have no effect on the cover ideal, we assume
that G has no isolated vertex. Since J(G) has a linear resolution, it follows from
[20, Theorem 8.1.9] that G is a Cohen–Macaulay graph. Thus, by Proposition 3.1,
the graph Gk is Cohen–Macaulay.

(i) Notice that [20, Theorem 8.1.9] and Lemma 3.4 imply that (J(G)(k))pol =
J(Gk) has a linear resolution. Hence, it follows from [20, Corollary 1.6.3] that
J(G)(k) has a linear resolution.

(ii) By [26, Theorem 1.1] (see also [7, Theorem 2.3]), we know that every Cohen–
Macaulay very well-covered graph is shellable. Therefore, Gk is a shellable graph
and hence, [20, Theorem 8.2.5] and Lemma 3.4 imply that (J(G)(k))pol = J(Gk)
has linear quotients. We now conclude from Lemma 3.5 that J(G)(k) has linear
quotients. �
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We do not know whether the converse of the above theorem is true. However,
in the following corollary, we prove that the converse of Theorem 3.6 is true for
bipartite graphs. As mentioned in the introduction, the “only if” part of the fol-
lowing corollary is already known by [28, Theorem 2.2]. However, we provide an
alternative proof using Theorem 3.6.

Corollary 3.7. Let G be a bipartite graph and k ≥ 1 be an integer. Then J(G)
has a linear resolution if and only if J(G)k has a linear resolution.

Proof. Without loss of generality, we assume that G has no isolated vertex. Note
that by [16, Corollary 2.6], the symbolic and the ordinary powers of cover ideals
of bipartite graphs coincide. If J(G) has a linear resolution, then it follows from
[20, Theorem 8.1.9] that G is Cohen–Macaulay. In particular, G is unmixed and
hence it is very well-covered. Therefore, the “only if” part follows from Theorem
3.6. To prove the “if” part assume that V (G) = X ∪ Y is a bipartition for the
vertex set of G. Suppose that X = {x1, . . . , xs} and Y = {y1, . . . , yt}. Clearly, we
can assume that k ≥ 2. It follows from [20, Corollary 1.6.3] and Lemma 3.4 that
(J(G)k)pol = J(Gk) has a linear resolution. Then [20, Theorem 8.1.9] implies that
Gk is a Cohen–Macaulay graph. Notice that the set

F = {xi,j | 1 ≤ i ≤ s and 2 ≤ j ≤ k}
is an independent subset of vertices of Gk. Since Gk has no isolated vertex, one
can easily check that

NGk
[F ] = F ∪ {yi,j | 1 ≤ i ≤ t and 1 ≤ j ≤ k − 1}.

Thus Gk\NGk
[F ] is isomorphic to G. This means that lkΔ(Gk)F = Δ(G). Since Gk

is Cohen–Macaulay, it follows that G is Cohen–Macaulay too. Hence, [20, Theorem
8.1.9] implies that J(G) has a linear resolution. �

LetM be a finitely generated Zn-graded S-module. Let u ∈ M be a homogeneous
element and Z ⊆ {x1, . . . , xn}. The K-subspace uK[Z] generated by all elements uv
with v ∈ K[Z] is called a Stanley space of dimension |Z|, if it is a free K[Z]-module.
Here, as usual, |Z| denotes the number of elements of Z. A decomposition D of M
as a finite direct sum of Stanley spaces is called a Stanley decomposition of M . The
minimum dimension of a Stanley space in D is called the Stanley depth of D and is
denoted by sdepth(D). The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}

is called the Stanley depth of M . We say that a Zn-graded S-module M satisfies
Stanley’s inequality if

depth(M) ≤ sdepth(M).

In fact, Stanley [36] conjectured that every Zn-graded S-module satisfies Stanley’s
inequality. This conjecture has been recently disproved in [11]. However, it is
still interesting to find the classes of Zn-graded S-modules which satisfy Stanley’s
inequality. For a reader’s friendly introduction to Stanley depth, we refer to [31]
and for a nice survey on this topic, we refer to [19]. In [32, Corollary 3.4], the
author proves that for a bipartite graph G, the modules J(G)k and S/J(G)k satisfy
Stanley’s inequality for every integer k � 0. In the following corollary, we prove
Stanley’s inequality for every symbolic power of the cover ideal of Cohen–Macaulay
very well-covered graphs.
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Corollary 3.8. Let G be a very well-covered graph and suppose that its cover
ideal J(G) has a linear resolution. Then J(G)(k) and S/J(G)k satisfy Stanley’s
inequality, for every integer k ≥ 1.

Proof. By Theorem 3.6, we know that J(G)(k) has linear quotients. On the other
hand, it is known [34] that Stanley’s inequality holds true for every monomial ideal
with linear quotients. Thus, J(G)(k) satisfies Stanley’s inequality.

To prove that S/J(G)k satisfies Stanley’s inequality, by [24, Corollary 4.5], it
is sufficient to prove that T/(J(G)(k))pol satisfies Stanley’s inequality (where T is
the new polynomial ring). By assumption and [20, Theorem 8.1.9], we conclude
that G is a Cohen–Macaulay graph. Again, we can assume that G has no isolated
vertex. Thus, Proposition 3.1 implies that Gk is a Cohen–Macaulay very well-
covered graph. It then follows from [26, Theorem 1.1] (see also [7, Theorem 2.3])
that Gk is a vertex decomposable graph. Now, It follows from [33] that T/J(Gk)
satisfies Stanley’s inequality. Finally, the assertion follows from Lemma 3.4. �

4. Bipartite graphs

In this section, we determine a linear upper bound for the regularity of powers
of cover ideals of bipartite graphs. For a monomial ideal I, let deg(I) denote the
maximum of the degrees of the elements of Gens(I). Thus in particular, deg(J(G))
is the cardinality of the largest minimal vertex cover of the graph G. It is clear that
for every integer k ≥ 1 and every graph G, the regularity of S/J(G)k is at least
kdeg(J(G))− 1. In Theorem 4.3, we prove that the regularity of S/J(G)k cannot
be much larger than kdeg(J(G)) − 1, when G is a bipartite graph. We first need
the following simple lemma.

Lemma 4.1. Assume that I ⊆ S is a monomial ideal. Let S′ = K[x2, . . . , xn] be
the polynomial ring obtained from S by deleting the variable x1 and set I ′ = I ∩S′.
Then reg(I ′) ≤ reg(I).

Proof. Using polarization, we can assume that I is a squarefree monomial ideal.
Then the assertion follows immediately from [17, Lemma 3.1]. �

The following lemma is a consequence of Lemma 4.1.

Lemma 4.2. Let I be a monomial ideal of S. Then for every monomial u ∈ S, we
have reg(S/(I : u)) ≤ reg(S/I).

Proof. Clearly, we can assume that u is a variable, say u = x1. By applying
[30, Corollary 18.7] on the exact sequence

0 −→ S/(I : x1)(−1) −→ S/I −→ S/(I, x1) −→ 0,

we obtain that

reg(S/(I : x1)) + 1 ≤ max{reg(S/I), reg(S/(I, x1)) + 1} ≤ reg(S/I) + 1,

where the last inequality follows from Lemma 4.1. �

We are now ready to prove the main result of this section. Let G be a bipartite
graph with cover ideal J(G) and assume that k ≥ 1 is an integer. In the follow-
ing theorem, we determine an interval of length reg(S/J(G)), which contains the
regularity of S/J(G)k.
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Theorem 4.3. Let G be a bipartite graph with n vertices. Then for every integer
k ≥ 1, we have

kdeg(J(G))− 1 ≤ reg(S/J(G)k) ≤ kdeg(J(G)) + reg(S/J(G))− 1.

Proof. The first inequality is trivial, because deg(J(G)k) = kdeg(J(G)). Thus, we
prove the second inequality. Assume that V (G) = U ∪ W is a bipartition for the
vertex set of G. Without loss of generality, we may assume that U = {x1, . . . , xt}
and W = {xt+1, . . . , xn}, for some integer t with 1 ≤ t ≤ n. Let m be the number
of edges of G. We prove the assertions by induction on m + k. Clearly, we can
assume that G has no isolated vertex.

There is nothing to prove for k = 1. If m = 1, then J(G) = (x1, y1). Hence
deg(J(G)) = 1 and reg(S/J(G)k) = k − 1. Thus, the desired inequality is true
for m = 1. Therefore, assume that k,m ≥ 2. Let S1 = K[x2, . . . , xn] be the
polynomial ring obtained from S by deleting the variable x1 and consider the ideals
J1 = J(G)k ∩ S1 and J ′

1 = (J(G)k : x1). It follows from [10, Lemma 2.10] that

reg(S/J(G)k) ≤ max{regS1
(S1/J1), regS(S/J

′
1) + 1}.

Notice that J1 = (J(G) ∩ S1)
k. Hence, by Lemma [32, Lemma 2.2], there exists

a monomial u1 ∈ S1 with deg(u1) = degG(x1) such that

J(G) ∩ S1 = u1J(G \NG[x1])S1

and thus, J1 = uk
1J(G \ NG[x1])

kS1. Notice that if C is a minimal vertex cover
of G \ NG[x1], then C ∪ NG(x1) is a minimal vertex cover of G. This shows that
deg(J(G\NG[x1]))+degG(x1) ≤ deg(J(G)). On the other hand, Lemma 4.1 implies
that reg(J(G) ∩ S1) ≤ reg(J(G)) and therefore,

regS1
(S1/J(G \NG[x1])S1) ≤ reg(S/J(G))− deg(u1).

Hence, by the induction hypothesis we conclude that

regS1
(S1/J1) = regS1

(S1/J(G \NG[x1])
kS1) + kdeg(u1)

≤ kdeg(J(G \NG[x1])) + reg(S/J(G \NG[x1]))− 1 + kdegG(x1)

≤ k(deg(J(G))− degG(x1)) + reg(S/J(G))− degG(x1)− 1 + kdegG(x1)

≤ kdeg(J(G)) + reg(S/J(G))− 1.

Thus, using the inequality (4), it is enough to prove that

regS(S/J
′
1) ≤ kdeg(J(G)) + reg(S/J(G))− 2.

For every integer i with 2 ≤ i ≤ t, let Si = K[x1, . . . , xi−1, xi+1, . . . , xn] be the
polynomial ring obtained from S by deleting the variable xi and consider the ideals
J ′
i = (J ′

i−1 : xi) and Ji = J ′
i−1 ∩ Si. �

Claim. For every integer i with 1 ≤ i ≤ t− 1 we have

reg(S/J ′
i) ≤ max{kdeg(J(G)) + reg(S/J(G))− 2, regS(S/J

′
i+1) + 1}.

Proof of the claim. For every integer i with 1 ≤ i ≤ t−1, we know from [10, Lemma
2.10] that

(∗) reg(S/J ′
i) ≤ max{regSi+1

(Si+1/Ji+1), regS(S/J
′
i+1) + 1}.
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Notice that for every integer i with 1 ≤ i ≤ t − 1, we have J ′
i = (J(G)k :

x1x2 . . . xi). Thus Ji+1 = J ′
i ∩ Si+1 = ((J(G)k ∩ Si+1) :Si+1

x1x2 . . . xi). Hence, it
follows from Lemma 4.2 that

(∗∗) regSi+1
(Si+1/Ji+1) ≤ regSi+1

(Si+1/(J(G)k ∩ Si+1)).

By lemma [32, Lemma 2.2], we conclude that there exists a monomial ui+1 ∈
Si+1, with deg(ui+1)=degG(xi+1) such that J(G)∩Si+1= ui+1J(G\NG[xi+1])Si+1.
Therefore

J(G)k ∩ Si+1 = uk
i+1J(G \NG[xi+1])

kSi+1.

Notice that if C is a minimal vertex cover of G \NG[xi+1], then C ∪NG(xi+1) is a
minimal vertex cover of G. This shows that deg(J(G \NG[xi+1])) + degG(xi+1) ≤
deg(J(G)). On the other hand, Lemma 4.1 implies that reg(J(G) ∩ Si+1) ≤
reg(J(G)) and therefore,

regSi+1
(Si+1/J(G \NG[xi+1])Si+1) ≤ reg(S/J(G))− deg(ui+1).

Hence, by the induction hypothesis we conclude that

regSi+1
(Si+1/(J(G)k ∩ Si+1)) = regSi+1

(Si+1/J(G \NG[xi+1])
kSi+1) + kdeg(ui+1)

≤ kdeg(J(G \NG[xi+1])) + reg(S/J(G \NG[xi+1]))− 1 + kdegG(xi+1)

≤ k(deg(J(G))− degG(xi+1)) + reg(S/J(G))− degG(xi+1)− 1 + kdegG(xi+1)

≤ kdeg(J(G)) + reg(S/J(G))− 2.

Now the claim follows by inequalities (∗) and (∗∗).
Now, J ′

t = (J(G)k : x1x2 . . . xt) and hence, [32, Lemma 3.2] implies that J ′
t =

J(G)k−1 and thus, by the inductive hypothesis we conclude that reg(S/J ′
t) ≤ (k −

1)deg(J(G))+reg(S/J(G))−1. Therefore, using the claim repeatedly, implies that

reg(S/J ′
1) ≤ max{kdeg(J(G)) + reg(S/J(G))− 2, regS(S/J

′
t) + t− 1}

≤ max{kdeg(J(G)) + reg(S/J(G))− 2, (k − 1)deg(J(G)) + reg(S/J(G)) + t− 2}.

Note that t=| U |≤ deg(J(G)). Thus, the above inequalities imply that reg(S/J ′
1)≤

kdeg(J(G)) + reg(S/J(G))− 2. This completes the proof of the theorem. �

Remark 4.4. It follows from Corollary 3.7 that if G is a bipartite graph and J(G)
has a linear resolution, then for every integer k ≥ 1, we have

reg(S/J(G)k) = kdeg(J(G))− 1.

This shows that the first inequality of Theorem 4.3 is sharp. Although the difference
of the lower and the upper bound given by Theorem 4.3 is small, but we have no
example of a bipartite graph G, for which there exists an integer k ≥ 2 with

reg(S/J(G)k) = kdeg(J(G)) + reg(S/J(G))− 1.

In fact, we believe that the second inequality of Theorem 4.3 can still be improved.
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[15] Ralf Fröberg, On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988), Banach
Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 57–70. MR1171260

[16] Isidoro Gitler, Enrique Reyes, and Rafael H. Villarreal, Blowup algebras of ideals of
vertex covers of bipartite graphs, Algebraic structures and their representations, Con-
temp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 273–279, DOI
10.1090/conm/376/06963. MR2147027
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