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QUANTITATIVE QUASISYMMETRIC UNIFORMIZATION

OF COMPACT SURFACES

LUKAS GEYER AND KEVIN WILDRICK

(Communicated by Jeremy Tyson)

Abstract. Bonk and Kleiner showed that any metric sphere which is Ahlfors
2-regular and linearly locally contractible is quasisymmetrically equivalent to
the standard sphere in a quantitative way. We extend this result to arbitrary
metric compact orientable surfaces.

1. Introduction and statement of results

Through isothermal coordinates, every Riemannian metric on a compact ori-
entable surface S determines a Riemann surface structure on S. By the classical
uniformization theorem, S carries a conformally equivalent Riemannian metric of
constant curvature 1 (in the case of a sphere), 0 (for a torus), or −1 (for higher
genus surfaces). Hence, the original Riemannian metric on S can be conformally
deformed to a metric of constant curvature.

The purpose of this note is to extend the above discussion to certain classes of
possibly non-smooth distances on compact orientable surfaces. In this setting we
have a metric, but no smooth structure, and the appropriate category replacing the
class of conformal mappings is the class of quasisymmetric mappings.

In a metric space X we will denote the distance between a and b by |a− b|X , or
|a−b| if the metric space X is clear from the context. Let X and Y be metric spaces.
An embedding φ : X → Y , i.e., a homeomorphism from X onto its image φ(X), is
a quasisymmetric embedding if there is a homeomorphism η : [0,∞) → [0,∞) such
that for all triples of distinct points a, b, and c in X,

|φ(a)− φ(b)|Y
|φ(a)− φ(c)|Y

≤ η

(
|a− b|X
|a− c|X

)
.

The homeomorphism η is called a distortion function for the mapping φ. If a
quasisymmetric embedding φ has a distortion function η, it will be called an η-
quasisymmetric embedding. A quasisymmetric map is a quasisymmetric homeo-
morphism, i.e., a quasisymmetric embedding φ : X → Y with φ(X) = Y . The
inverse of an η-quasisymmetric map is η′-quasisymmetric with η′(t) = 1/η−1(1/t).
A proof of this fact can be found in the book of Heinonen [Hei01, Proposition 10.6],
which also serves as an excellent introduction to the theory of quasisymmetric map-
pings on metric spaces. A quasisymmetric mapping distorts relative distances by
a controlled amount. While it may distort distances, it must do so more-or-less
isotropically.
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A motivating example arises from Cannon’s Conjecture in geometric group the-
ory. The boundary at infinity of a Gromov hyperbolic group carries a natural
family of visual metrics, any two of which are quasisymmetrically equivalent. For
this reason, one might say that the metric on the boundary of a Gromov hyperbolic
group is defined only up to quasisymmetry. Cannon’s Conjecture can be phrased
as follows: If the boundary ∂∞G of a Gromov hyperbolic group G is homeomorphic
to the sphere S

2, then each visual metric on ∂∞G is quasisymmetrically equiva-
lent to the standard metric on S2. If Cannon’s conjecture is true, then a Gromov
hyperbolic group whose boundary is homeomorphic to S2 acts discretely and co-
compactly by isometries on 3-dimensional hyperbolic space. See [Bon06] and the
references therein for a more detailed discussion of this problem.

The following quasisymmetric uniformization theorem of Bonk and Kleiner
[BK02] led to significant progress on Cannon’s Conjecture:

Theorem 1 (Bonk-Kleiner). Let (X, d) be an Ahlfors 2-regular metric space that is
homeomorphic to S2. Then (X, d) is quasisymmetrically equivalent to S2 equipped
with the smooth metric of constant curvature 1 if and only if (X, d) is linearly locally
contractible.

A metric space X is linearly locally contractible if there is a constant Λ ≥ 1
such that for each point x ∈ X and radius 0 < r < (diamX)/Λ, the ball B(x, r) is
contractible inside the dilated ball B(x,Λr). The metric spaceX is Ahlfors 2-regular
if there is a constant K ≥ 1 such that for each x ∈ X and radius 0 < r < 2 diamX,
the two-dimensional Hausdorff measure H2 satisfies

(1)
r2

K
≤ H2(B(x, r)) ≤ Kr2.

Given a Gromov-hyperbolic group G with ∂∞G homeomorphic to S
2, each vi-

sual metric on ∂∞G is linearly locally contractible. However, it is not known
whether there always is an Ahlfors 2-regular visual metric on ∂∞G. Simple ex-
amples show that Theorem 1 fails without the assumption of Ahlfors 2-regularity,
although Ahlfors 2-regularity is not preserved by quasisymmetric mappings in gen-
eral.

The linear local contractibility condition is a quantitative quasisymmetric invari-
ant; i.e., if f : X → Y is η-quasisymmetric and X is linearly locally contractible
with constant Λ, then Y is linearly locally contractible with a constant that depends
only on Λ and η.

Theorem 1 is quantitative in the sense that the quasisymmetric map can be cho-
sen to have a distortion depending only on the data of X, i.e., the constants Λ and
K appearing in the linear local contractibility and Ahlfors 2-regularity conditions.

Problems outside geometric group theory, such as the search for an intrinsic
characterization of R2 up to bi-Lipschitz equivalence (note that Ahlfors 2-regularity
is a bi-Lipschitz invariant), led to the development of versions of Theorem 1 for non-
compact simply connected surfaces [Wil08] and for a large class of planar domains
[MW13], as well as a local version [Wil10]. In this work, we provide a version of
Theorem 1 that applies to all orientable compact surfaces, including those of higher
genus. This is part of an ongoing program to complete the classification of Ahlfors
2-regular and linearly locally contractible metric surfaces up to quasisymmetry.
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Theorem 2. Let (X, d) be a metric compact orientable surface. Assume that (X, d)
is Ahlfors 2-regular and linearly locally contractible. Then there exists a Riemann-

ian metric d̂ of constant curvature 1, 0, or −1 on X such that the identity map

id : (X, d) → (X, d̂) is quasisymmetric with a distortion function depending only on
the data of X.

Here the data of X are the constants in the Ahlfors 2-regularity and linear local
contractibility conditions.

Except for the statement of dependence of the distortion function only on the
data of (X, d), Theorem 2 follows immediately from the local uniformization the-
orem of [Wil10] and an elementary local-to-global result for quasisymmetric map-
pings due to Tukia and Väisälä [TV80, Theorem 2.23]. A quantitative proof is
significantly more involved.

We note that the data of (X, d) do not measure the “quasisymmetric distance” of
(X, d) to a Riemannian metric of constant curvature. For each genus g ≥ 1 and any
Λ ≥ 1, there is a compact Riemannian surface of genus g and constant curvature
that fails to be Λ-linearly locally contractible; this occurs when the injectivity radius
is sufficiently small compared to the diameter. Note also that as the genus grows,
the ratio of the injectivity radius to the diameter necessarily tends to 0.

This indicates a very interesting, though vague, question: given (X, d) as in

Theorem 2, find a Riemannian metric d̂ on X and a quasisymmetric mapping

f : (X, d) → (X, d̂) with “minimal” quasisymmetric distortion over all such metrics
and mappings.

One might hope to improve Theorem 2 by separating the data into parts which
control the scale and severity of the conditions separately. Suppose that (X, d) is a
metric compact orientable surface with constants C1, C2 ≥ 1 so that for all x ∈ X
and 0 < r < (diamX)/C1, the ball B(x, r) is contractible inside B(x,C2r) and
satisfies (1) with K replaced by C2. Unfortunately, Theorem 2 does not hold if the
data of X is defined to be the single number C2; a counter-example is provided by
a sequence of smooth dumbell-shaped spheres with narrowing “bars”; by allowing
C1 to grow, we may choose C2 to be constant for the entire sequence. Despite this,
the quasisymmetric distortion of mappings to a sphere of constant curvature must
grow. A similar construction can be made in any genus.

Our proof of Theorem 2 proceeds as follows. Let (X, d) be a metric surface
as given in the theorem. By the local uniformization result of [Wil10], (X, d)
has an atlas of uniformly quasisymmetric mappings. Our first step is to create a
compatible conformal atlas, giving (X, d) the structure of a Riemann surface. This
step can be thought of as creating “quasi-isothermal” coordinates; while the chart
transitions are conformal, the chart mappings themselves are only quasisymmetries.
The classical uniformization theorem then provides a globally defined conformal
homeomorphism F : X → Y to a Riemann surface that is the quotient of the
sphere, plane, or disk by an appropriate group of Möbius transformations. The
Riemann surface Y inherits a Riemannian metric dY of constant curvature 1, 0,
or −1, respectively. Although conformal maps are locally quasisymmetric, this
does not immediately give us global information about the metric properties of the
uniformizing map F : (X, d) → (Y, dY ). We show that the uniformizing mapping F
is in fact globally quasisymmetric with a distortion function that depends only on
the data of X. The key idea in this step is a type of Harnack inequality. The claim
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in the theorem then follows by taking d̂ to be the pull-back of the metric dY under
F .

2. Background and preliminary results

2.1. Notation. In a metric space X, we will denote the distance between points x
and y of X by |x− y|X or |x− y| when the space X is understood. We denote by

BX(x, r) = B(x, r) = {y : |x− y| < r}
the open ball of radius r centered at x and by B(x, r) the corresponding closed
ball. For an open or closed ball B of radius r and a number λ > 0, the notation
λB denotes the same type of ball with the same center and radius λr.

We denote the complex plane with the standard Euclidean metric by C and the
disk model of hyperbolic space equipped with the standard hyperbolic metric of
curvature −1 by D. The open ball of radius α > 0 centered at 0 is denoted by Cα

in C and by Dα in D, i.e.,

Cα = BC(0, α) and Dα = BD(0, α).

Note that α is the Euclidean radius for Cα, whereas it is the hyperbolic radius for
Dα.

2.2. Quasisymmetric mappings. Let φ : X → Y be an embedding of metric
spaces. For x ∈ X and 0 < r < 1

2 diamX, define

Lφ(x, r) := sup{|φ(x)− φ(y)|Y : |x− y|X ≤ r} and

lφ(x, r) := inf{|φ(x)− φ(y)|Y : |x− y|X ≥ r}.
If φ is an η-quasisymmetric embedding, then for x ∈ X and 0 < r1, r2 < 1

2 diamX,

Lφ(x, r1)

lφ(x, r2)
≤ η

(
r1
r2

)
.

We will need a statement about the equicontinuity of quasisymmetric maps,
which is a slightly more general version of [Hei01, Corollary 10.27].

Lemma 3. Let φ : U → V be an η-quasisymmetric embedding of metric spaces and
let DU and DV be positive real numbers. If diamU ≥ DU and diamV ≤ DV , then

ω(t) = max

{
3DV t

DU
, DV η

(
3t

DU

)}

is a modulus of continuity for φ.

Proof. Given x1, x2 ∈ U with 0 < |x1 − x2| < DU/3, there exists x3 ∈ U such that
|x1 − x3| ≥ DU/3. Then

|φ(x1)− φ(x2)| ≤ |φ(x1)− φ(x3)|η
(
|x1 − x2|
|x1 − x3|

)
≤ DV η

(
3|x1 − x2|

DU

)
.

If |x1 − x2| ≥ DU/3, the trivial estimate |φ(x1) − φ(x2)| ≤ DV yields the desired
estimate. �

Note that the modulus of continuity provided by Lemma 3 is not scale-invariant.
If the metrics on U and V are scaled by the same quantity, the resulting modulus
of continuity may still change; see subsection 2.4.

The following result, which is a slight variation of [TV80, Theorem 2.23], gives a
local-to-global result for quasisymmetric homeomorphisms between compact spaces
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in terms of Lebesgue numbers. We include a proof for the reader’s convenience.
Recall that L > 0 is a Lebesgue number for a covering {Xj} if for every set E with
diamE ≤ L there exists j such that E ⊆ Xj .

Theorem 4 (Tukia-Väisälä). Let F : X → Y be a homeomorphism between com-
pact connected metric spaces X and Y . Suppose that

• {Xj}nj=1 is a finite open covering of X with Lebesgue number LX < diamX.
• δ > 0 satisfies the implication

|x− x′| = LX/2 =⇒ |F (x)− F (x′)| ≥ δ,

• there is a quasisymmetric distortion function η such that for each j =
1, . . . , n, the restricted mapping F |Xj

is η-quasisymmetric.

Then F is quasisymmetric with distortion function depending only on η and the
ratios diam(X)/LX and diam(Y )/δ.

Proof. Let a, b, and c be distinct points of X. Set

ρ =
|a− b|
|a− c| and ρ′ =

|F (a)− F (b)|
|F (a)− F (c)| .

We consider four cases.

(1) Suppose that max{|a − b|, |a − c|} ≤ LX/2. Then {a, b, c} is contained in
some Xj , and so ρ′ ≤ η(ρ).

(2) Suppose that |a − b| ≤ LX/2 but |a − c| > LX/2. Since X is connected
with diamX > LX , there exists x ∈ X with |a − x| = LX/2. Then there
exists j such that {a, b, x} ⊆ Xj and

|F (a)− F (x)| ≥ δ and
|a− b|
|a− x| ≤

2ρ diamX

LX
.

This implies that

ρ′ =
|F (a)− F (b)|
|F (a)− F (x)|

|F (a)− F (x)|
|F (a)− F (c)| ≤ η

(
2ρ diamX

LX

)
diamY

δ
.

(3) Suppose that |a − b| > LX/2 but |a − c| ≤ LX/2. By the same argument
as in the previous case, there exists x ∈ X with |a− x| = LX/2, as well as
an index j such that {a, c, x} ⊆ Xj . This gives

|F (a)− F (x)| ≥ δ and
|a− x|
|a− c| ≤

2ρ diamX

LX
,

which implies that

ρ′ =
|F (a)− F (b)|
|F (a)− F (x)|

|F (a)− F (x)|
|F (a)− F (c)| ≤

diamY

δ
η

(
2ρ diamX

LX

)
.

(4) Suppose that min{|a − b|, |a − c|} > LX/2. Then ρ ≥ LX

2 diamX and ρ′ ≤
diamY

δ , so

ρ′ ≤ 2

(
diamX

LX

)(
diamY

δ

)
ρ.

Combining these estimates on ρ′ in terms of ρ yields the desired result. �
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2.3. Conformality and quasisymmetry. A conformal mapping f : U → V be-
tween domains in C is quasisymmetric when restricted to a relatively compact sub-
domain U ′ ⊂ U , with quasisymmetric distortion depending only on U and U ′. This
fact, which should be compared to Koebe’s distortion theorem, will play a key role
in the proof of Theorem 12. A more general statement is even true: one may con-
sider quasiconformal mappings in higher dimensional Euclidean spaces, although
the quasisymmetric distortion then also depends on the maximal quasiconformal
dilatation. See [Väi81, Theorem 2.4] for a proof of this fact, which we will use in
the following form:

Proposition 5. Let G : C1 → C be a conformal embedding. For each β ∈ (0, 1),
the restriction G : Cβ → C is a quasisymmetric embedding with distortion function
that depends only on β.

An easy consequence of Proposition 5 is the following.

Corollary 6. There is a universal constant 0 < β1 < 1/2 such that for any con-
formal embedding G : C1 → C,

G(Cβ1
) ⊆ BC

(
G(0),

lG(0, 1/2)

6

)
.

Proof. By Proposition 5, there is a universal quasisymmetric distortion function η
for G : C1/2 → C. Hence, if β ∈ (0, 1/2), then

LG(0, β) ≤ η (2β) lG(0, 1/2).

Thus, choosing 0 < β1 < 1/2 so small that η(2β1) < 1/6 fulfills the requirements
of the statement. �

We will also need a hyperbolic version of this result. Recall that the hyperbolic
disk D is equipped not just with a conformal structure but also with the standard
hyperbolic metric. Our proof employs Koebe’s distortion theorem for specificity,
but could also be carried out using Proposition 5 alone.

Proposition 7. Let G : C1 → D be a conformal embedding of the Euclidean unit
disk into the hyperbolic plane. Then the restriction G : C1/10 → D is a quasisym-
metric embedding with a universal distortion function.

Proof. The map f(z) = G(z)−G(0)
G′(0) = z + O(z2) is conformal in C1, so by Koebe’s

distortion theorem [Dur83], the image f(C1) contains the Euclidean disk C1/4, and
the image of the Euclidean disk C1/10 is contained in the Euclidean disk C10/81 ⊆
C1/8. This implies that

BC

(
G(0),

|G′(0)|
4

)
⊆ G(C1) ⊆ D

and

G
(
C1/10

)
⊆ BC

(
G(0),

|G′(0)|
8

)
⊆ BC

(
G(0),

1− |G(0)|
2

)
.

It follows from the definition of the hyperbolic metric that the identity mapping

id : BC

(
G(0),

1− |G(0)|
2

)
→ D
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is, up to scaling, a bi-Lipschitz embedding with universal constants, so it is qua-
sisymmetric with universal distortion. Since the composition of quasisymmetric
maps is quasisymmetric, quantitatively, the result follows from Proposition 5. �

The following statement is an easy corollary of Proposition 7.

Corollary 8. There is a universal constant 0 < β2 < 1/10 such that for any
conformal embedding G : C1 → D,

G(Cβ2
) ⊆ BD

(
G(0),

lG(0, 1/2)

6

)
.

Proof. By Proposition 7, there is a universal quasisymmetric distortion function η
for G : C(1/10) → D. Hence, if β ∈ (0, 1/10), then

LG(0, β) ≤ η (10β) lG(0, 1/10) ≤ η (10β) lG(0, 1/2).

Choosing β2 so small that η(10β2) < 1/6, we get the claim of the corollary. �
For the remainder of the paper, for convenience we define β = min{β1, β2}.

2.4. The data of X, scalings, and normalization. Let X be a metric space
that is Ahlfors 2-regular with constantK, linearly locally contractible with constant
Λ, and homeomorphic to a compact orientable surface. We will refer to Λ and K
as the data of X.

For λ > 0, we may form a new metric space Xλ by multiplying the original metric
on X by λ. Then Xλ is again Ahlfors 2-regular and linearly locally contractible,
and Xλ has the same data as X. Moreover, the identity mapping from X to Xλ is
η-quasisymmetric with η(t) = t. Hence, in the proof of Theorem 2, we may scale
the domain as we see fit.

Convention. For the remainder of this article, let X be a metric space that is
Ahlfors 2-regular with constant K, linearly locally contractible with constant Λ,
homeomorphic to a compact orientable surface, and with diamX = 1. When we
state that a quantity depends only the data of X, we are implicitly assuming this
normalization.

The main reason for this convention (aside from notational convenience) is that
Lemma 3 is not scale-invariant. Without this normalization, we would not be able
to say that certain moduli of continuity depend only on the data of X.

3. Finding a conformal structure

By [Wil10, Theorem 4.1], X possesses a quasisymmetric atlas:

Theorem 9. There is a quantity A0 ≥ 1 and a quasisymmetric distortion function
η, each depending only on the data of X, such that for each 0 < R ≤ 1/A0 there is
a neighborhood U of x such that

(1) B(x0, R/A0) ⊆ U ⊆ B(x0, A0R),
(2) there exists an η-quasisymmetric map φ : U → C1 with φ(x0) = 0.

The original theorem in [Wil10] does not include the normalization φ(x0) = 0.
However, since φ : U → C1 is η-quasisymmetric, the basic distortion estimates
[Hei01, Proposition 10.8] imply that φ(x0) ∈ Cα where α < 1 depends only on

η. As the Möbius transformation T (z) = z−φ(x0)

1−φ(x0)z
has quasisymmetric distortion

depending only on |φ(x0)|, we may assume that φ(x0) = 0. Accordingly, given a
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pair (U, φ) where φ : U → C1 is a homeomorphism, we will call φ−1(0) the center
of (U, φ).

We use the atlas provided by Theorem 9 to produce a conformal atlas on X that
is adapted to its metric. We have separated the construction into two lemmas. The
first is purely metric; the second modifies the output of the first.

Lemma 10. Let ρ ∈ (0, 1) be given. Then there exists a quasisymmetric distortion
function η, radii α, r0 > 0, and a positive integer n ∈ N, such that the following
statements hold:

(1) There exists an atlas Aρ = {(Uj ,C1, φj) | j = 1, . . . , n} of X, where each
mapping φj : Uj → C1 is an η-quasisymmetric homeomorphism with center
denoted by xj.

(2) The collection {B(xj , r0)}nj=1 is pairwise disjoint.
(3) The collection {B(xj , 2r0)}nj=1 covers X.
(4) For each j = 1, . . . , n, it holds that B(xj , 10r0) ⊆ Uj and

Cα ⊆ φj(B(xj , r0)) ⊆ φj(B(xj , 10r0)) ⊆ Cρ.

Moreover, η depends only on the data of X, while α, r0, and n depend only on the
data of X and ρ.

Note that the collection {B(xj , 10r0)}nj=1 forms an open cover of X for which
8r0 is a Lebesgue number; cf. Theorem 4. Moreover, Lemma 3 implies that for each
j = 1, . . . , n, the restriction φj |B(xj ,10r0) and its inverse have moduli of continuity
that depend only on ρ and the data of X.

Proof. For each x ∈ X, let φx : Ux → C1 be the η-quasisymmetric mapping provided
by Theorem 9 with R = 1/A0, so that

B(x, 1/A2
0) ⊆ Ux ⊆ B(x, 1).

Applying Lemma 3 to φx and its inverse, we see that there is a common modulus
of continuity ω for all of the mappings {φx, φ

−1
x }x∈X , depending only on the data

of X.
Hence, there is a radius 0 < r0 < 1/10A2

0 and a number 0 < α < ρ, each
depending only on ρ and the data of X, such that for each x ∈ X,

(2) φx(B(x, 10r0)) ⊆ Cρ and φx(B(x, r0)) ⊇ Cα.

Let {x1, . . . , xn} be a maximal 2r0-separated set in X. Then the open balls
{B(xj , r0)}nj=1 are pairwise disjoint, while the open balls {B(xj , 2r0)}nj=1 cover
X. Since X is Ahlfors 2-regular and we have assumed that diamX = 1, this im-
plies that n is comparable to r−2

0 and therefore depends only on ρ and the data.
Moreover, as 10r0 < 1/(A0)

2, for each j = 1, . . . , n, it holds that B(xj , 10r0) ⊆ Uxj
.

In particular {Uxj
}nj=1 is also a cover of X. This shows that {(Uxj

,C1, φxj
)}nj=1 is

the desired atlas. �

We now adapt the atlas given in Lemma 10 so that the transition mappings are
conformal. This step is similar to the proof that a quasiconformal structure on a
surface has a compatible conformal structure; see [Kuu67] and [Can69].

We recall that β ∈ (0, 1) is a universal constant given by Corollaries 6 and 8.
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Lemma 11. There exists a quasisymmetric distortion function η, radii α, r0 > 0,
and a positive integer n ∈ N, all depending only on the data of X, such that the
following statements hold:

(1) There exists an atlas B = {(Uj ,C1, ψj)}nj=1 of X, where each mapping
ψj : Uj → C1 is an η-quasisymmetric homeomorphism with center denoted
by xj.

(2) The collection {B(xj , r0)}nj=1 is pairwise disjoint.
(3) The collection {B(xj , 2r0)}nj=1 covers X.
(4) For each j = 1, . . . , n, it holds that B(xj , 10r0) ⊆ Uj and

Cα ⊆ ψj(B(xj , r0)) ⊆ ψj(B(xj , 10r0)) ⊆ Cβ.

(5) The transition maps ψj ◦ ψ−1
k are conformal wherever defined.

Proof. We begin by letting 0 < ρ < 1 be a number which will be determined
below and will depend only on the data of X. Consider the atlas Aρ provided
by Lemma 10. Let us say that this atlas is given by η′-quasisymmetric charts
{φj : Uj → C1}nj=1 where η′ depends only on the data of X. The associated radii
α′, r′0 and the number of charts n depend only on the data of X and ρ.

Since X is connected, the charts can be relabeled to satisfy

Uj+1 ∩ (U1 ∪ · · · ∪ Uj) �= ∅

for j = 1, . . . , n− 1.
Define ψ1 : U1 → C1 by setting ψ1 = φ1. We will iteratively construct ψj : Uj →

C1 for j = 2, . . . , n as follows. For k < j, we assume that the already constructed
map ψk is quasisymmetric on Uk, has center xk, and that if k, k′ < j, then the
transition functions ψk ◦ ψ−1

k′ are conformal where defined.
In the following, we will write Da,b := φa(Ua∩Ub) for indices a > b in {1, . . . , n}.
For k < j, define Tj,k = ψk ◦ φ−1

j . Then Tj,k is quasisymmetric and hence
quasiconformal on Dj,k. Therefore, the complex dilatation μj,k of Tj,k is well-
defined (up to a.e. equivalence) on Dj,k. Given another index k′ < j, it holds that

Tj,k = (ψk ◦ψ−1
k′ )◦Tj,k′ on Dj,k∩Dj,k′ . It therefore follows from the conformality of

ψk◦ψ−1
k′ that μj,k = μj,k′ a.e. on the intersection Dj,k∩Dj,k′ . This shows that there

exists a measurable Beltrami coefficient μj : C1 → C1 with μj = μj,k a.e. on Dj,k

for each index 1 ≤ k < j, and μj = 0 on C1 \
⋃j−1

k=1Dj,k. We extend μj to the whole

plane by μj(z) = (z/z)
2
μj(1/z) for |z| > 1. By the Measurable Riemann Mapping

Theorem there exists a unique quasiconformal map hj : C → C, normalized by
hj(0) = 0, hj(1) = 1, with complex dilatation μhj

= μj a.e. By the symmetry of

μj and the chosen normalization, hj(1/z) = 1/hj(z), and so hj(C1) = C1. We
define ψj = hj ◦ φj . The transformation formula for Beltrami coefficients (see,

e.g., [LV73, IV.5.1]) shows that if k < j, then ψk ◦ ψ−1
j = Tj,k ◦ h−1

j is conformal.

Moreover, ψj(xj) = 0.
We claim that for each j = 1, . . . , n, the mapping ψj has a quasisymmetric

distortion function that depends only on the data of X. As this is true of φj ,
it suffices to prove the same of hj , and we may also assume that j > 1. As a
normalized quasiconformal self-map of the unit disk, hj is quasisymmetric with
distortion controlled by the maximal dilatation ‖μj‖∞; see e.g. [Väi81, Theorem
2.4]. By an inductive argument, it is easy to show that this dilatation is bounded
by a constant depending only on η′ (which depends only on the data of X) and
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the number of charts n (which depends on the data and ρ). However, the bound is
actually independent of ρ, by the following argument.

Fix j > 1. By the uniform quasisymmetry of {φk}nk=1, there is a quantity
0 ≤ κ < 1, depending only on the data of X, such that for all indices k < j with
Dj,k �= ∅, the complex dilatation μφk◦φ−1

j
of φk ◦ φ−1

j : Dj,k → φk(Dj,k) satisfies

‖μφk◦φ−1
j
‖∞ ≤ κ. For k ∈ {1, . . . , j − 1}, define

Fj,k = Dj,k\
k−1⋃
l=1

Dj,l, Fk = C1\
k−1⋃
l=1

Dk,l, and Fj = C1\
j−1⋃
k=1

Dj,k.

If z ∈ Fj , then μj(z) = 0. If z ∈ Fj,k, then φk ◦ φ−1
j (z) ∈ Fk, and hence

μk|φk◦φ−1
j (Fj,k)

= 0.

The transformation formula for Beltrami coefficients now shows that for almost
every point z ∈ Fj,k,

μj(z) = μj,k(z) = μψk◦φ−1
j
(z) = μhk◦φk◦φ−1

j
(z) = μφk◦φ−1

j
(z).

Since C1 =
⋃j−1

k=1 Fj,k ∪ Fj , we see that ‖μj‖∞ ≤ κ. As discussed above, we may
now conclude that each of the mappings {ψj}nj=1 has a quasisymmetric distortion
function that depends only on the data of X.

We have now seen that the atlas B := {(Uj ,C1, ψj)|j = 1, . . . , n} of X satisfies
conditions (1) and (5) of the statement. Moreover, setting r0 := r′0, the conditions
(2) and (3) follow directly from the corresponding statements for the atlas AX,ρ.
Note that only condition (4) involves the constant β. We now show how to choose
ρ so that condition (4) is satisfied.

Let us make the convention that h1 : C1 → C1 is the identity. As discussed above,
the mappings {hj}nj=1 are uniformly quasisymmetric with a distortion function
depending only on the data of X. Hence, by Lemma 3, there is a common modulus
of continuity for all of the mappings {hj , h

−1
j }nj=1 that depends only on the data of

X. Since β is a universal constant, we may choose ρ > 0 depending only on the data
of X such that for each j = 1, . . . , n, it holds that hj(Cρ) ⊆ Cβ. Having so chosen
ρ, the radius α′ depends only on the data of X, and so we may also choose α > 0
depending only on the data of X such that for each j = 1, . . . , n, hj(Cα′) ⊇ Cα.
This establishes condition (4). �

3.1. Uniformizing to a standard metric. The atlas B given by Lemma 11 de-
termines a conformal structure on the compact orientable surface X; i.e., the pair
(X,B) determines a Riemann surface. By the classical uniformization theorem,
(X,B) is conformally equivalent to a standard Riemann surface Y = U/Γ, where
U denotes the standard Riemann surface structure on the sphere, the plane, or
the unit disk, and Γ is a discrete group of Möbius transformations acting freely
and properly discontinuously on U . The standard spherical, plane, or hyperbolic
Riemannian metric on U then descends to a Riemannian metric of constant cur-
vature +1, 0, or −1 on Y , compatible with the conformal structure. We fix a
uniformizing conformal homeomorphism F : (X,B) → Y and equip Y with the
distance function dY arising from the Riemannian metric of constant curvature.
Denote by π the quotient mapping from U to Y . Recall that dY may be expressed
as dY (p, q) = infγ length(γ), where the infimum is taken over all smooth paths γ in
U such that the projected path π ◦ γ connects p and q. A priori, it is not clear how
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the properties of the distance dY or the map F depend on the original metric space
(X, d). The following statement is the main result of this paper and completes the
proof of Theorem 2.

Theorem 12. The uniformizing map F : (X, d) → (Y, dY ) is η-quasisymmetric,
with distortion η depending only on the data of X.

Proof of Theorem 12. In the case that U = Ĉ, X itself must be homeomorphic to
Ĉ, and so Theorem 1 implies Theorem 12. We consider the remaining planar and
hyperbolic cases together.

Define gj : C1 → F (Uj) by gj = F ◦ψ−1
j . Then gj is a conformal homeomorphism

that lifts to a conformal embedding Gj : C1 → U .
We use a sequence of claims to complete the proof.

Claim 1. Let j ∈ {1, . . . , n}. The projection π : U → Y maps Gj(Cβ) isometrically
onto gj(Cβ). In other words, for each z, z′ ∈ Cβ , |gi(z)−gi(z

′)|Y = |Gi(z)−Gi(z
′)|U .

Proof of Claim 1. For u ∈ U , define

r(u) = min{|u− γ(u)|U : γ ∈ Γ \ {id}}.
If U = C, then r(u) is independent of u ∈ U and depends only on the group Γ. If
U = D, then r(u) is bounded below by the minimal translation distance of a non-
identity element of Γ\{id} and is a 2-Lipschitz function of u; see e.g. [Bea83, section
7.35]. These facts imply that for any u ∈ U and r > 0,

• if r ≤ r(u)/6, then π|BU (u,r) is an isometry;
• if π|BU (u,r) is injective, then r ≤ r(u).

Since π : Gj(C1) → gj(C1) is injective, it follows that lGj
(0, 1) ≤ r(Gj(0)). Corol-

laries 6 and 8 now complete the proof of this claim. �

Claim 2. For each j = 1, . . . , n, the mapping F |B(xj ,10r0) is quasisymmetric with
distortion that depends only on the data of X.

Proof of Claim 2. By Propositions 5 and 7, the mapping Gj restricted to Cβ is
quasisymmetric with a universal distortion function. By Claim 1, this is also true
of gj . Since we may write F = gj ◦ψj , and ψj is η-quasisymmetric where η depends
only on the data, it follows that for each j = 1, . . . , n, the mapping F |ψ−1

j (Cβ)
is

quasisymmetric with distortion that depends only on the data of X. According to
Lemma 11, ψ−1

j (Cβ) ⊇ B(xj , 10r0), implying the claim. �

Claim 3. There is a constant C ≥ 1 depending only on the data of X such that for
each j = 1, . . . , n,

(3) lgj (0, α) ≥
diamY

C
.

Proof of Claim 3. As {BX(xj , 2r0)}nj=1 covers X and ψj(BX(xj , 10r0)) ⊆ Cβ , it

holds that {ψ−1
j (Cβ)}nj=1 also covers X. Since F is a homeomorphism, this implies

that Y =
⋃n

j=1 gj(Cβ). As Y is connected, it follows that

(4) max{diam gj(Cβ) : j = 1, . . . , n} ≥ diamY

n
.

Recall that the number of charts n depends only on the data of X.
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Consider indices j and k in {1, . . . , n}, and suppose that |xj −xk|X < 4r0. Then
ψj(xk) ∈ Cβ , and so dY (F (xj), F (xk)) ≤ Lgj (0, β). On the other hand, |xj − xk| ≥
r0, and so F (xk) /∈ gj(Cα), implying dY (F (xj), F (xk)) ≥ lgj (0, α). Moreover, since
gj : Cβ → Y is a quasisymmetric embedding with universal distortion function,
there is a quantity C0 ≥ 1 depending only on the ratio of β to α, and hence only
on the data of X, such that

lgj (0, α) ≥
Lgj (0, β)

C0
≥ diam gj(Cβ)

2C0
.

Since, in addition,

diam gj(Cβ) ≥ Lgj (0, β) ≥ lgj (0, α),

we have now shown that the quantities

lgj (0, α), Lgj (0, β), diam gj(Cβ), and dY (F (xj), F (xk))

are all comparable with constants that depend only on the data of X. The same is
true with the roles of j and k reversed.

Since the open sets {B(xj , 2r0)}nj=1 cover the connected space X, for any pair of
indices j, j′ ∈ {1, . . . , n}, there is a sequence of distinct indices j = j1, . . . , jk = j′

of length at most n so that |xji − xji+1
| < 4r0 for each i = 1, . . . , k − 1. Since n

depends only on the data of X, (4) proves the claim. �

We complete the proof of Theorem 12 by employing Theorem 4. We consider
the covering of X given by {B(xj , 10r0) : j = 1, . . . , n}. By Claim 2, the mapping
F is quasisymmetric on each element of this cover with a distortion function η that
depends only on the data of X. Moreover, Lemma 11 implies that this cover has
Lebesgue number 8r0. Suppose that x, x′ ∈ X satisfy |x− x′| = 4r0. We may find
indices j and k in {1, . . . , n} such that |x − xj | < 2r0 and |x′ − xk| < 2r0. Then
2r0 ≤ |x′ − xj | ≤ 6r0, so x, x′, xj ∈ B(xj , 10r0) and

|F (x′)− F (x)| ≥ |F (x′)− F (xj)|
η
(

|x′−xj |
|x′−x|

) ≥ |F (x′)− F (xj)|
η
(
3
2

) .

Since x′ /∈ B(xj , r0), we see that F (x′) /∈ gj(Cα), so by Claim 3,

|F (x′)− F (xj)| = |F (x′)− gj(0)| ≥ lgj (0, α) ≥
diamY

C
.

Now Theorem 4 implies that F : X → Y is quasisymmetric with distortion function
depending only on the data of X. �
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