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A FAMILY OF NON-SPLIT TOPOLOGICALLY SLICE LINKS

WITH ARBITRARILY LARGE SMOOTH SLICE GENUS

JUNGHWAN PARK AND ARUNIMA RAY

(Communicated by David Futer)

Abstract. We construct an infinite family of topologically slice 2–component
boundary links �i, none of which is smoothly concordant to a split link, such
that g4(�i) = i.

1. Introduction

A k–component link L is the isotopy class of an embedding
⊔

k S
1 → S3 and

a knot is simply a 1–component link. A link is said to be smoothly slice if its
components bound a disjoint collection of smoothly embedded disks in B4; if there
exists such a disjoint collection of merely locally flat disks we say that the link is
topologically slice. The study of smoothly and topologically slice links is closely
connected with the study of smooth and topological 4–manifolds; e.g. any knot
which is topologically slice but not smoothly slice [End95, Gom86, HK12, HLR12,
Hom14]) gives rise to an exotic copy of R4 [GS99, Exercise 9.4.23].

In an approach to approximating sliceness of links, we may consider surfaces
bounded by a link in B4. The minimal genus of a smooth embedded connected
oriented surface in B4 with boundary a given link L is said to be the smooth slice
genus of L, whereas the minimal genus of such a locally flat surface is called the
topological slice genus of L. We denote these by g4(L) and g4

top(L) respectively.
Note that if a link is smoothly (resp. topologically) slice it has zero smooth (resp.
topological) slice genus. The converse is not true; e.g. the Hopf link (with either
orientation) has smooth and topological slice genus zero, but is neither smoothly
nor topologically slice. (Since slice surfaces must be oriented, the slice genus of a
link depends on the relative orientation of the link components in general.) It is
easy to see that the smooth (resp. topological) slice genus is an invariant of smooth
(resp. topological) concordance of links.

For any link L we see that g4
top(L) ≤ g4(L), since any smooth embedding of a

surface is locally flat. Understanding the extent to which these two quantities are
different can be seen as refining the question of when topologically slice knots may
be smoothly non-slice. In particular, we focus on the following natural questions:

• Are there examples of links which satisfy g4
top(L) < g4(L)?

• Can the difference between g4(·) and g4
top(·) be arbitrarily large?
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The above have been studied extensively for knots [Don83, CG88, Tan98, FM16].
Here we will focus on 2–component links, for which we show that the answer to
both questions is yes.

Theorem 1.1. For any integer i ≥ 0, there exists a 2–component link �i such that

(1) g4(�i) = i (consequently, the links �i are distinct in smooth concordance),
(2) �i is not smoothly concordant to a split link,
(3) �i is a boundary link,
(4) �i is topologically slice (in particular, g4

top(�i) = 0).

Removing condition (2) makes the theorem trivial, since we can use the links
�i = Ki � U , where each Ki is a topologically slice knot with g4(Ki) = i, U is
the unknot, and � indicates taking a split union. Moreover, examples satisfying
(2-4) are already known by [RS13, Theorem B]. We will show that our examples
are distinct from those in smooth concordance in Proposition 3.3.

2. Preliminaries

This section consists of a brief overview of Legendrian knots, limited to the
material we need for our proof. For more precise definitions and details, we direct
the reader to [Etn05].

Recall that the standard contact structure on R
3 is given by the kernel of the 1–

form dz−y dx. Then the standard contact structure on S3 is defined such that if one
removes a single point from S3 the resulting contact structure is contactomorphic
to the standard contact structure on R

3. An embedding K of a knot K in S3 is
Legendrian if K is tangent to the 2–planes of the standard contact structure on S3.
Legendrian knots may be studied concretely using their front projections, i.e., since
a knot is compact we may consider it to be in R

3 ⊆ S3 and then use the projection
onto the xz–plane. The middle and right panel of Figure 1 show front projections
of two Legendrian knots. There are two classical invariants for Legendrian knots,
the Thurston–Bennequin number, tb(·), and the rotation number, rot(·). Given a
front projection Π(K) of a Legendrian knot K, we have the following formulae:

tb(K) = writhe(Π(K)) − 1

2
#cusps(Π(K)),

(2.1)

rot(K) =
1

2
#downward-moving cusps(Π(K)) − 1

2
#upward-moving cusps(Π(K)).

(2.2)

Our main tool in this paper is the slice–Bennequin inequality (see [Rud95,Rud97,
Etn05,AM97,LM98]), which says that for any Legendrian representative K of a knot
K,

tb(K) + |rot(K)| ≤ 2τ (K) − 1 ≤ 2g4(K) − 1

where τ (·) is Ozváth–Szabó’s concordance invariant from Heegaard–Floer homol-
ogy [OS04], and the first inequality is from [Pla04]. Recall that τ is additive under
connected sum and insensitive to the orientation of a knot.

The standard contact structure on S1 × R
2 is also defined as the kernel of the

1–form dz−y dx, where we identify S1×R
2 with R

3 modulo (x, y, z) ∼ (x+1, y, z).
As before an embedding P of a knot P in S1 ×R

2 (called a pattern) is Legendrian
if P is tangent to the 2-planes of the standard contact structure on S1 ×R

2. As in
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P
tb(P) = 2
rot(P) = 0
w(P) = 1

K
tb(K) = 1
rot(K) = 0

P(K)
tb(P(K)) = 3
rot(P(K)) = 0

Figure 1. The Legendrian satellite operation

R
3, we have front projections on the xz–plane, where the x–direction is understood

to be periodic. We will draw these front projections in [0, 1] × R
2 as shown in the

left panel of Figure 1, where the dashed lines indicate that the boundary should
be identified. Using such front projections, we compute the Thurston–Bennequin
number and rotation number of Legendrian patterns using the same combinatorical
formulae as for knots given above. The winding number, w(·), of a Legendrian
pattern is the signed number of times it wraps around the longitude of S1 × R

2.
Let P be a Legendrian pattern in S1 × R

2 with n end points, and K be a
Legendrian knot. Then the Legendrian satellite operation yields a Legendrian knot
P(K) by taking n vertical parallel copies of K and inserting P in an appropriately
oriented strand of K (see Figure 1 for an example). It is easy to see that P(K) is a
Legendrian diagram for the tb(K)–twisted satellite of K. (For a detailed discussion
of the Legendrian satellite operation see [Ng01,NT04,Ray15].) Hence when tb(K) =
0, P(K) represents the classical untwisted satellite with pattern P and companion
K (see Figure 2). The following proposition establishes the relationship between
the Thurston–Bennequin numbers and rotation numbers of a Legendrian pattern,
a Legendrian knot, and the associated Legendrian satellite.

Proposition 2.1 (Remark 2.4 of [Ng01]). For a Legendrian pattern P and a Leg-
endrian knot K,

tb(P(K)) = w(P)2tb(K) + tb(P),

rot(P(K)) = w(P)rot(K) + rot(P).

3. Proof of the main theorem

For this section, we fix a Legendrian diagram K of a knot K with the following
properties:

(1) K is topologically slice,
(2) g3(K) = g4(K) = τ (K) = 1,
(3) tb(K) = 0,
(4) rot(K) = 2g4(K) − 1 = 1.
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Examples of such knots can be easily found, as follows. Let J be any knot with
a Legendrian realization J satisfying tb(J ) = 0 and τ (J) > 0, e.g., the right-
handed trefoil. Any knot with positive maximal Thurston–Bennequin number has
positive τ and such a Legendrian realization. Now perform the Legendrian satellite
operation on J using the pattern for untwisted positive Whitehead doubling shown
in Figure 2. We call the resulting Legendrian knot K, which is a realization of the
topological knot type K (note that K is the positive untwisted Whitehead double
of J). We know that K is topologically slice since it has Alexander polynomial
one [Fre82]. Using Proposition 2.1, we see that tb(K) = 0 and rot(K) = 1, and
by [Hed07], we see that g3(K) = g4(K) = τ (K) = 1.

Since tb(K) = 0, from Section 2, we know that for any Legendrian diagram P
for a pattern P , the Legendrian satellite P(K) is a Legendrian diagram for the
untwisted satellite P (K).

We start with a few propositions. For any positive integer i, consider the Legen-
drian diagram Pi for a pattern Pi, given in Figure 3. Notice that the satellite knot
Pi(K) is the (i, 1) cable of K.

Proposition 3.1. For the pattern Pi and any integer i ≥ 1, we have

g4(Pi(K)) = τ (Pi(K)) = i.

Proof. Using Proposition 2.1, we calculate:

tb(Pi(K)) = w(Pi)
2tb(K) + tb(Pi) = i2 · 0 + (i− 1) = i− 1,

rot(Pi(K)) = w(Pi)rot(K) + rot(Pi) = i · 1 + 0 = i.

Then by the slice–Bennequin inequality we have the following:

(i− 1) + |i| = 2i− 1 ≤ 2τ (Pi(K)) − 1 ≤ 2g4(Pi(K)) − 1

and thus,
i ≤ τ (Pi(K)) ≤ g4(Pi(K)).

Note that we can change Pi(K) into the (i, 0) cable of K by performing i− 1 band
sums. Since g4(K) = 1 there is a surface Σ in B4 with g(Σ) = 1 and ∂Σ = K, and

K = W(J)
tb(K) = 0
rot(K) = 1

J
tb(J) = 0
rot(J) = 1

W
tb(W) = 0
rot(W) = 1
w(W) = 0

Figure 2. Constructing the knots K.
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i strands

Figure 3. A Legendrian diagram Pi for the pattern Pi. We com-
pute that tb(Pi) = i− 1, rot(Pi) = 0 and w(Pi) = i.

i strands

i strands

Figure 4. A Legendrian diagram Qi for the pattern Qi. We com-
pute that tb(Qi) = 2i− 1, rot(Qi) = 0 and w(Qi) = 0.

we can take i parallel copies of Σ to get a genus i surface smoothly embedded in
B4 bounded by Pi(K). This shows that g4(Pi(K)) ≤ i. Combining this with the
above, we conclude that g4(Pi(K)) = τ (Pi(K)) = i. �

Note that we can also see that τ (Pi(K))= i by using Hom’s formula from [Hom14],
since Pi(K) is the (i, 1) cable of K and, by [Hom14], ε(K) = 1.

For any positive integer i, consider the Legendrian diagram Qi for a pattern Qi,
shown in Figure 4. This pattern is similar to the one shown in [Ray15, Figure 9],
but w(Qi) = 0 whereas the pattern from [Ray15] has winding number one.

Proposition 3.2. For the pattern Qi and any integer i ≥ 1, we have

g4(Qi(K)) = τ (Qi(K)) = i.

Proof. Using Proposition 2.1, we calculate:

tb(Qi(K)) = w(Qi)
2tb(K) + tb(Qi) = 02 · 0 + (2i− 1) = 2i− 1,

rot(Qi(K)) = w(Qi)rot(K) + rot(Qi) = 0 · 1 + 0 = 0.



444 JUNGHWAN PARK AND ARUNIMA RAY

Then by the slice–Bennequin inequality we have the following:

(2i− 1) + |0| = 2i− 1 ≤ 2τ (Qi(K)) − 1 ≤ 2g4(Qi(K)) − 1

and thus,

(3.1) i ≤ τ (Qi(K)) ≤ g4(Qi(K)).

Notice that Q1(K) is just the positive clasped Whitehead double of K and thus
g4(Q1(K)) ≤ g3(Q1(K)) = 1. By (3.1), 1 ≤ g4(Q1(K)) and thus, g4(Q1(K)) = 1.
Additionally, there exists a genus one cobordism between Qi(K) and Qi+1(K) for
i ≥ 1, shown in Figure 5, obtained by changing a crossing at the clasp in Qi+1(K).
By induction, we see that g4(Qi(K)) ≤ i, and combining this with (3.1), we see
that g4(Qi(K)) = τ (Qi(K)) = i. �

Qi+1 Qi Qi

i + 1

i + 1

i + 1

i + 1

i

i

Figure 5. A genus one cobordism from Qi+1 to Qi. Since the
cobordism shown occurs in S1 ×D2, this also shows a cobordism
from Qi+1(K) to Qi(K). The first arrow is obtained by changing a
crossing at the clasp. Notice that the second diagram is no longer
Legendrian. The second arrow is obtained by an isotopy and results
in the familiar diagram Qi.

We are now ready to prove the main theorem, which we restate below. For each
positive integer i, consider the pattern Li shown in Figure 6. Notice that the link
Li(K), if we ignore the orientation of the strands, is obtained by performing the
(i + 1, 1) cabling operation on each component of the (2, 0) cable of K.

Theorem 1.1. For any integer i ≥ 0, there exists a 2–component link �i such that

(1) g4(�i) = i (consequently, the links �i are distinct in smooth concordance),
(2) �i is not smoothly concordant to a split link.
(3) �i is a boundary link.
(4) �i is topologically slice (in particular, g4

top(�i) = 0.)

Proof. For any integer i ≥ 0, let �i denote the 2–component link Li(K). We first
show g4(Li(K)) = i. When i = 0, if we disregard orientation, L0(K) is simply
the (2, 0) cable of K. Since the components of L0(K) have opposite orientation,
they cobound an annulus which implies that g4(L0(K)) = 0. For i ≥ 1, notice
that there is a cobordism from Qi+1(K) to Li(K) and a cobordism from Li(K) to
Qi(K) (see Figure 7). By the first cobordism and Proposition 3.2, we have i+ 1 =
g4(Qi+1(K)) ≤ g4(Li(K)) + 1 and by the second cobordism and Proposition 3.2,
we have g4(Li(K)) ≤ g4(Qi(K)) = i. Hence we can conclude g4(Li(K)) = i.

For i ≥ 0, assume that Li(K) is smoothly concordant to a split link. Then it was
observed in [RS13, Lemma 2.1] that Li(K) is smoothly concordant to K(i+1,1) �
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i + 1 strands

i + 1 strands

Figure 6. A Legendrian diagram Li for the pattern Li. We com-
pute that tb(Li) = 2i, rot(Li) = 0 and w(Li) = 0.

Qi+1 Li Qi

i + 1

i + 1

i + 1

i + 1

i

i

Figure 7. The first arrow indicates a cobordism between
Qi+1(K) and Li(K) and the second arrow indicates a cobordism
between Li(K) and Qi(K). Note that the right panel is the middle
panel of Figure 5

r(Ki+1,1) where Ki+1,1 is the (i+1, 1) cable of K, r(Ki+1,1) is Ki+1,1 with reversed
orientation, and � indicates a split union. Using this observation, we see that
g4(Ki+1,1 � r(Ki+1,1)) = g4(Li(K)) = i and thus, g4(Ki+1,1#r(Ki+1,1)) = i (see
[CH14, Proposition 3.3]). This is a contradiction since, τ (Ki+1,1#r(Ki+1,1)) =
τ (Ki+1,1) + τ (r(Ki+1,1)) = 2τ (Ki+1,1) = 2τ (Pi+1(K)) and by Proposition 3.1,
τ (Pi+1(K)) = i + 1.

It is straightforward to see that Li(K) is a boundary link by construction: use
parallel copies of a Seifert surface for K. Lastly Li(K) is topologically slice since
K is topologically slice. �

Proposition 3.3. The examples �i from Theorem 1.1 are distinct in smooth con-
cordance from the examples given in [RS13, Theorem B].

Proof. The examples in [RS13, Theorem B] consist of the (2, 0) cables, with either
the parallel or antiparallel orientation, of a family of knots {Wh(Ji)}, where Ji
is either the connected sum of i copies of the right-handed trefoil, or the torus
knot T2,2i+1. It is easy to see from [RS13, Corollary 3.2] that their argument also
applies for (2, 0) cables of the connected sum of i copies of the Whitehead double
of the right-handed trefoil knot. We will show that our examples are distinct
from these cables in smooth concordance. Since the Ruberman–Strle examples are
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(2,0) cables, we may choose the antiparallel orientation of the two strands; with
this orientation, the smooth slice genus of the link is zero. For our examples, we
saw in Theorem 1.1, that g4(�i) = i. Let �′i denote the link where we switch the
orientation of one component. Then we may attach a single band to see a genus
zero cobordism between �′i and P2i+2(K) (or its reverse). Then by Proposition 3.1,
g4(�

′
i) ≥ 2i + 1. On the other hand, if the link �i were concordant to a (2,0) cable

with some orientation, either �i or �′i would have zero slice genus.
In [RS13], we also see some examples due to Livingston consisting of Bing doubles

of certain topologically slice knots. As before, we can choose an orientation for the
Bing double such that there is a genus zero cobordism to the untwisted Whitehead
double, and thus the slice genus of the link with this orientation is at most one. By
our previous argument, our links �i are distinct in concordance from Livingston’s
examples as long as i ≥ 2. �

Note that above we have shown that the difference between the smooth slice
genus of 2–component topologically slice links with the two different relative orien-
tations for the strands can be arbitrarily large. This is also true for the examples
given in [RS13].

In [Cav15], Cavallo introduced a generalization of Ozváth–Szabó’s concordance
invariant τ for links. He established the following inequality (see [Cav15, Proposi-
tions 1.4 and 1.5]):

tb(L) + |rot(L)| ≤ 2τ (L) − 2 ≤ 2g4(L)

for any Legendrian diagram L for a 2–component link L. If we apply this inequality
to �i, using Proposition 2.1 and the diagram in Figure 6, we get the following:

2i + |0| ≤ 2τ (�i) − 2 ≤ 2i.

Then we see that τ (�i) = i + 1 and the inequality is sharp for �i. This establishes
the following corollary.

Corollary 3.4. Cavallo’s τ–invariant can be arbitrarily large for non-split topo-
logically slice 2–component links.

Remark 3.5. An anonymous referee suggested the following slightly different ap-
proach to the proof of the main theorem of this paper. Let J be the positive
untwisted Whitehead double of the right-handed trefoil. Start with the (2,0) cable
of J , with antiparallel strands, and performing a connect-sum locally with #nJ . As
in our proof, we can find cobordisms to knots with known slice genera to conclude
that the slice genus of the link is n. These links also satisfy the requirements of
Theorem 1.1.
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