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ZEROS OF BESSEL FUNCTION DERIVATIVES

ÁRPÁD BARICZ, CHRYSI G. KOKOLOGIANNAKI, AND TIBOR K. POGÁNY

(Communicated by Mourad E. H. Ismail)

Abstract. We prove that for ν > n − 1 all zeros of the nth derivative of
the Bessel function of the first kind Jν are real. Moreover, we show that
the positive zeros of the nth and (n + 1)th derivative of the Bessel function
of the first kind Jν are interlacing when ν ≥ n and n is a natural number
or zero. Our methods include the Weierstrassian representation of the nth
derivative, properties of the Laguerre-Pólya class of entire functions, and the
Laguerre inequalities. Some similar results for the zeros of the first and second
derivatives of the Struve function of the first kind Hν are also proved. The
main results obtained in this paper generalize and complement some classical
results on the zeros of Bessel and Struve functions of the first kind. Some
open problems related to Hurwitz’s theorem on the zeros of Bessel functions
are also proposed.

1. Introduction and Main Results

The zeros of Bessel functions of the first kind have numerous applications in
applied mathematics, mathematical physics and engineering sciences. There is an
extensive literature on various properties of the zeros of Bessel functions of the first
kind. They were investigated by such famous researchers as Bessel, Euler, Fourier,
Gegenbauer, Hurwitz, Lommel, Rayleigh and Stokes. We refer to the survey paper
[Ke] and the references therein for detailed information on various properties of
the zeros of Bessel functions of the first kind. In the past three decades the zeros
of the nth derivative of Bessel functions of the first kind for n ∈ {1, 2, 3} have
also been studied by researchers such as Elbert, Ifantis, Ismail, Kokologiannaki,
Laforgia, Landau, Lorch, Mercer, Muldoon, Petropoulou, Siafarikas and Szego; for
more details see the papers [IM,KP] and the references therein. However, there are
no results in the literature about the zeros of the nth derivative of Bessel functions
when n is a natural number greater than 3. Some interesting results and open

problems about J
(n)
ν when ν ∈ (n− 3, n− 2) were stated by Lorch and Muldoon in

[LM]. However the paper [LM] is so far the only study in which the zeros of higher
order derivatives of Jν were considered. In this paper our aim is to partially fill
this gap and to present some results for the derivatives of Bessel functions by using
the Laguerre-Pólya class of entire functions and the so-called Laguerre inequalities.
By using a technique similar to that used for the Bessel functions of the first kind,
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we also present some new results for the zeros of the first and second derivatives
of the Struve functions of the first kind. Moreover, by using these results we find
explicit expressions for some Rayleigh sums for the zeros of Struve functions and
their first and second derivatives. In addition, lower bounds for the first positive
zero of these functions are given. At the end of this section we propose some open
problems which may be of interest for further research. Throughout this paper
n, s ∈ N0 = {0, 1, 2, . . . }.

1.1. Zeros of the nth derivative of Bessel functions. In view of the results
on the zeros of the nth derivative of Bessel functions of the first kind, when n ∈
{0, 1, 2, 3}, the statements of the following theorem are very natural and somehow
expected. Theorem 1 provides extensions of some classical results on the zeros of
Bessel function of the first kind and its derivative of the first order.

Theorem 1.

(a) If ν > n− 1, then J
(n)
ν (x) has infinitely many zeros, which are all real and

simple, except the origin.
(b) If ν ≥ n, then the positive zeros of the nth and (n + 1)th derivative of Jν

are interlacing.

(c) If ν > n − 1, then all zeros of (n − ν)J
(n)
ν (x) + xJ

(n+1)
ν (x) are real and

interlace with the zeros of J
(n)
ν (x).

We mention that part (b) in particular reduces to the chains of inequalities

j′′′ν,1 < j′′ν,1 < j′′′ν,2 < j′′ν,2 < j′′′ν,3 < j′′ν,3 < . . . , ν ≥ 2,

and

j′′ν,1 < j′ν,1 < j′′ν,2 < j′ν,2 < j′′ν,3 < j′ν,3 < . . . , ν ≥ 1,

where j′′ν,n and j′′′ν,n denote the nth positive zero of J ′′
ν and J ′′′

ν , respectively. These
inequalities complement the well-known ones [OLBC, p. 235]

j′ν,1 < jν,1 < j′ν,2 < jν,2 < j′ν,3 < jν,3 < . . . , ν ≥ 0.

We also note that part (c) is a generalization of the well-known result that
for ν > −1 the zeros of the Bessel functions Jν and Jν+1 are interlacing (see
[OLBC, 10.21.3]). Namely, by choosing n = 0 in part (c) we obtain that the zeros
of Jν and xJ ′

ν(x)− νJν(x) = xJν+1(x) are interlacing.
By using the main idea from [DC, p. 705], an immediate consequence of part

(a) of Theorem 1 in terms of generalized hypergeometric polynomials is given in
Theorem 2. The connection between these two results is a special class of real
entire functions, called the Laguerre-Pólya class. Recall that a real entire function
ψ belongs to the Laguerre-Pólya class LP if it can be represented in the form

ψ(x) = cxme−ax2+bx
∏
n≥1

(
1 +

x

xn

)
e−

x
xn ,

where c, b, xn ∈ R, a ≥ 0, m ∈ N0 and
∑

n≥1 x
−2
n < ∞. The class LP consists

of entire functions which are uniform limits on compact sets of the complex plane
of polynomials with only real zeros. For more details on the class LP we refer to
[DC, p. 703] and the references therein.
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Theorem 2. If ν > n− 1, then all the zeros of the Laguerre-type polynomial

3F3

(
−s,

ν + 1

2
,
ν

2
+ 1; ν + 1,

ν − n+ 1

2
,
ν − n

2
+ 1;x

)
are real and simple.

We note that the name Laguerre-type polynomial for the Jensen polynomial
appearing in Theorem 2 is justified by the facts that the case n = 0 reduces
to the well-known generalized Laguerre polynomial 1F1(−s; ν + 1;x) (see [DC,
p. 705]), the case n = 1 corresponds to the generalized hypergeometric polyno-
mial 2F2

(
−s, ν

2 + 1; ν + 1, ν2 ;x
)
and Koornwinder’s generalized Laguerre polyno-

mial [Ko, p. 26], while the case n = 2 is related to the generalized Laguerre polyno-

mial 3F3

(
−s, ν+1

2 , ν
2 + 1; ν + 1, ν−1

2 , ν
2 ;x

)
considered by Álvarez-Nodarse and Mar-

cellán [AM].

1.2. Zeros of the first and second derivatives of Struve functions. In 1970
Steinig [St] studied the real zeros of the Struve functions and proved that for |ν| < 1

2
the zeros of the Struve function Hν are all real and simple, and the positive zeros
of Hν interlace with the positive zeros of Jν and lie in the intervals (mπ, (m+1)π),
m ∈ N. Motivated by these results and to find the radius of convexity of some
normalized Struve functions, Baricz and Yağmur [BY] have proved recently that
the zeros of the function H′

ν are all real and simple for |ν| < 1
2 , and the positive

zeros of the function H′
ν interlace with the positive zeros of Hν . In this subsection

we prove some analogous results for the second derivative of Hν .

Theorem 3.

(a) If ν ∈
(
0, 1

2

]
, then H′′

ν(x) has infinitely many zeros, which are all real and
simple.

(b) ν ∈
(
0, 1

2

]
, then the positive zeros of the first and second derivatives of

Hν(x) are interlacing.
(c) If ν ∈

[
− 1

2 ,
1
2

]
, then all zeros of −νH′

ν(x) + xH′′
ν(x) are real and interlace

with the zeros of H′
ν(x). Moreover, all zeros of −(ν + 1)Hν(x) + xH′

ν(x)
are real and interlace with the zeros of Hν(x).

The next result is the counterpart of Theorem 2 for Struve functions.

Theorem 4. If ν ∈
[
− 1

2 ,
1
2

]
and n ∈ {0, 1}, or ν ∈

(
0, 1

2

]
and n = 2, then all zeros

of the hypergeometric polynomial

4F4

(
−s, 1,

ν

2
+ 1,

ν

2
+

3

2
;
3

2
, ν +

3

2
,
ν − n

2
+ 1,

ν − n

2
+

3

2
;x

)
are real and simple.

1.3. Rayleigh sums of the zeros of the first and second derivatives of
Struve functions. The Struve function Hν and its derivatives of the first and
second order can be represented by infinite series and as infinite products using
Hadamard’s factorization. So, equating these representations, as was done in [KL]
for the zeros of Jν and J ′

ν , it is possible to obtain the Rayleigh sums for the zeros of
the Struve function Hν and of its first and second derivatives. For more information
on the Rayleigh sums of the zeros of Bessel functions of the first kind, we refer to
[OLBC, p. 240], [Wa, p. 502] and the references therein.
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Theorem 5. If ν ∈
[
− 1

2 ,
1
2

]
, then the first two Rayleigh sums for the nth positive

zeros hν,n, h
′
ν,n and h′′

ν,n of the Struve functions Hν , H
′
ν and H′′

ν are

∑
n≥1

1

h2
ν,n

=
1

3(2ν + 3)
,

∑
n≥1

1

h4
ν,n

=
7− 2ν

45(2ν + 3)2(2ν + 5)
,

∑
n≥1

1

(h′
ν,n)

2
=

ν + 3

3(ν + 1)(2ν + 3)
,

∑
n≥1

1

(h′
ν,n)

4
=

−2ν3 − 5ν2 + 72ν + 135

45(ν + 1)2(2ν + 3)2(2ν + 5)
,

∑
n≥1

1

(h′′
ν,n)

2
=

(ν + 2)(ν + 3)

3ν(ν + 1)(2ν + 3)
,

∑
n≥1

1

(h′′
ν,n)

4
=

−2ν5 − 13ν4 + 92ν3 + 763ν2 + 1500ν + 900

45ν2(ν + 1)2(2ν + 3)2(2ν + 5)
,

provided that ν > 0 in the last two relations.

An immediate consequence of the above theorem is Corollary 1. We note that if
we keep repeating the procedure in the proof of Theorem 5, then we can derive the
sums

∑
n≥1 h

−2k
ν,n , k ∈ {3, 4, . . . }. Using these Rayleigh sums it is possible to derive

sharper lower bounds for hν,1, h
′
ν,1 and h′′

ν,1.

Corollary 1. For |ν| < 1
2 we have the following inequalities:

hν,1 >
√

3(2ν + 3),

h2
ν,1 > 3(2ν + 3)

√
5(2ν + 5)

7− 2ν
,

h′
ν,1 >

√
3(ν + 1)(2ν + 3)

ν + 3
,

(h′
ν,1)

2 > 3(ν + 1)(2ν + 3)

√
5(2ν + 5)

−2ν3 − 5ν2 + 72ν + 135
,

h′′
ν,1 >

√
3ν(ν + 1)(2ν + 3)

(ν + 2)(ν + 3)
,

(h′′
ν,1)

2 > 3ν(ν + 1)(2ν + 3)

√
5(2ν + 5)

−2ν5 − 13ν4 + 92ν3 + 763ν2 + 1500ν + 900
,

provided that ν > 0 in the last two inequalities.

Since h′
ν,1 < hν,1, we can see that the third and fourth inequalities in the above

corollary are also bounds for hν,1, but they are sharper than the ones given in the
first and second inequalities. Moreover, for ν ∈

(
0, 1

2

]
we have that h′′

ν,1 < h′
ν,1, and

thus the fifth and sixth inequalities in the above corollary are also bounds for h′
ν,1

and hν,1.
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1.4. Open problems concerning the zeros of derivatives of Bessel and
Struve functions. Part (a) of Theorem 1 is an extension of the celebrated result
of von Lommel (see [Wa, p. 482]), which states that if ν > −1, then all zeros of Jν
are real. Now, recall that by means of Hurwitz’s theorem (see [Hu], [Wa, p. 483])
we know that if ν > −1, then all zeros of Jν are real; when −2s− 2 < ν < −2s− 1,
s ∈ N0, then Jν has 4s+ 2 complex zeros, of which two are purely imaginary; and
when −2s− 1 < ν < −2s, s ∈ N, then the Bessel function Jν has 4s complex zeros,
of which none are purely imaginary. See also [Hu,Ke,KK] for more details. Thus,
it is an interesting problem to provide a complete picture of the behavior of the
zeros of the derivatives of Bessel functions and to give a generalization of Hurwitz’s
theorem [Hu].

Open Problem 1. Let n ∈ N0.

(a) Is it true that if s is a nonnegative integer and n− 2s− 2 < ν < n− 2s− 1,

then the function J
(n)
ν has 4s + 2 complex zeros, of which two are purely

imaginary?
(b) Is it true that if s is a positive integer and n−2s−1 < ν < n−2s, then the

function J
(n)
ν has 4s complex zeros, of which none are purely imaginary?

Note that Hurwitz’s proof of his famous theorem on the distribution of the zeros
of Bessel functions of the first kind was based on the three term recurrence relation
for Bessel functions, on Lommel polynomials and on the relation between Bessel
functions and Lommel polynomials; see [Hu,Ke] and [Wa, p. 483] for more details.
Ki and Kim [KK] presented a nice alternative proof of Hurwitz’s theorem by using
a Fourier critical point approach. To define the notion of the Fourier critical point
let f be a real entire function defined in an open interval (a, b) ⊂ R. Let l ∈ N

and suppose that c ∈ (a, b) is a zero of f (l)(x) of multiplicity m ∈ N, that is,
f (l)(c) = · · · = f (l+m−1)(c) = 0 and f (l+m)(c) �= 0. Now, let k = 0 if f (l−1)(c) = 0;
otherwise let

k =

⎧⎨
⎩

m/2, if m is even,
(m+ 1)/2, if m is odd and f (l−1)(c)f (l+m)(c) > 0,
(m− 1)/2, if m is odd and f (l−1)(c)f (l+m)(c) < 0.

We say that f (l)(x) has k critical zeros and m − k noncritical zeros at x = c. A
point in (a, b) is said to be a Fourier critical point of f if some derivative of f has
a critical zero at the point. For more details on Fourier critical points we refer to
[KK].

Motivated by the proof of Hurwitz’s theorem given in [KK], we consider the
auxiliary function

fν,n(x) =
∑
m≥0

Γ(ν + 2m+ 1)

Γ(ν + 2m− n+ 1)Γ(ν +m+ 1)

xm

m!
.

This function is a real entire function of growth order 1
2 and consequently of genus

0. Due to [KK, Theorem 4.1] it has just as many Fourier critical points as couples
of nonreal zeros (complex conjugate pairs of zeros with nonzero imaginary part).

Now, since 2nxn/2J
(n)
ν (2

√
x) = xν/2fν,n(−x), part (a) of Theorem 1 implies that

the function fν,n has no Fourier critical points when ν > n − 1. The following
problem is motivated by [KK, p. 68] and in case it is true, it would imply that the
answers to the questions stated in Open Problem 1 are affirmative.
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Open Problem 2. Let n ∈ N0.

(a) Is it true that if s is a nonnegative integer and n− 2s− 2 < ν < n− 2s− 1,
then the function fν,n has exactly s Fourier critical points and one positive
real zero?

(b) Is it true that if s is a positive integer and n − 2s − 1 < ν < n − 2s, then
the function fν,n has exactly s Fourier critical points and no positive real
zeros?

From Steinig [St, p. 367] we know that when ν ∈
[
− 1

2 ,
1
2

]
all zeros of the Struve

function Hν are real. We also know that for ν > 1
2 we have Hν(x) > 0 for x > 0,

and thus there are no positive real zeros in this case. However, we do not know what
happens to the zeros when ν < − 1

2 . By using the connection between Bessel and
Struve functions, that is, the relation H−m− 1

2
(x) = (−1)mJm+ 1

2
(x), where m ∈ N0,

it is clear that all zeros of the Struve function Hν are real when ν = −m− 1
2 and

m ∈ N0. Moreover, the same is true for H′
ν , and in general we can state that if

ν = −m− 1
2 , m+ 1

2 > n− 1 and m,n ∈ N0, then all zeros of the function H
(n)
ν are

real. The next two open problems are motivated by this result.

Open Problem 3. Find the number of complex zeros of the function H
(n)
ν when

ν ∈ R and n ∈ N0.

Open Problem 4. Is it true that if ν ∈
[
− 1

2 ,
1
2

]
and n ∈ N0, then all zeros of

H
(n)
ν are real? Find the maximal range for ν for which all zeros of H

(n)
ν are real.

Recall that Steinig [St, p. 367] showed that the zeros of the functions Jν and
Hν are interlacing when |ν| < 1

2 . The following open problem is motivated by this
result.

Open Problem 5. Is it true that if ν ∈
[
− 1

2 ,
1
2

]
and n ∈ N0, then the zeros of

H
(n)
ν and J

(n)
ν interlace? Find the maximal range for ν for which all zeros of H

(n)
ν

and J
(n)
ν interlace.

Recently, Baricz and Szász [BS] and Baricz et al. [BCD] have found necessary and
sufficient conditions on the parameter ν such that for n ∈ {0, 1, 2, 3} the function

2νΓ(ν − n+ 1)z
n+2−ν

2 J
(n)
ν (

√
z) is starlike (maps the open unit disk of the complex

plane into a starlike domain) and all of its derivatives are close-to-convex (and hence
univalent). In their proofs the key tool was that for fixed m ∈ N and n ∈ N0 the

mth positive zeros of J
(n)
ν , denoted by j

(n)
ν,m, are increasing with ν on (n − 1,∞),

where n ∈ {0, 1, 2, 3} (see [KP,LP,Me,OLBC,WL] for more details). Now, since for

ν > n− 1 the zeros of J
(n)
ν are real, an affirmative answer to the following problem

would enable us to generalize the above-mentioned results of [BS] and [BCD].

Open Problem 6. Is it true that j
(n)
ν,m is increasing with ν on (n−1,∞) for n ∈ N0

and m ∈ N fixed?

2. Proof of the main results

Proof of Theorem 1. (a) We use mathematical induction to prove that each of the

zeros is real. For n = {0, 1, 2, 3} and ν > n − 1 we know that the zeros of J
(n)
ν (x)

are all real; see for example [IM,Ke,KP] and the references therein for more details.

We suppose that for fixed n ∈ {4, 5, . . . } and ν > n−1 the function J
(n)
ν (x) has only
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real zeros and we show that when ν > n then J
(n+1)
ν (x) also has only real zeros.

We denote the mth positive zero of J
(n)
ν (x) by j

(n)
ν,m, where m ∈ N and n ∈ N0.

From Skelton [Ske, p. 340] we know that the Weierstrassian decomposition

(2.1) J (n)
ν (x) =

xν−n

2νΓ(ν + 1− n)

∏
m≥1

⎛
⎜⎝1− x2(

j
(n)
ν,m

)2

⎞
⎟⎠

holds, and this infinite product is uniformly convergent on compact subsets of the
complex plane. Note that it was not stated in [Ske] for which ν the above infinite
product is valid. In fact, the above infinite product (2.1) appears in the proof of
[Ske, Theorem 2.1] enounced for ν ≥ n. However, (2.1) holds true for all ν > n− 1,
where n is a natural number or zero. To see this we note that since for fixed n and
ν,

lim
m→∞

m logm

log 22m

Γ(ν+1−n) + log Γ(m+ 1) + log Γ(ν +m+ 1) + Δn,m(ν)
=

1

2
,

where Δn,m(ν) = log Γ(ν+2m−n+1)− log Γ(ν+2m+1), the real entire function

Jν,n(x) = 2νΓ(ν+1−n)xn−νJ (n)
ν (x) =

∑
m≥0

(−1)mΓ(ν + 2m+ 1)Γ(ν + 1− n)x2m

m!22mΓ(ν + 2m− n+ 1)Γ(ν +m+ 1)

is of order 1
2 . By the Hadamard factorization theorem [Le, p. 26] it follows that

(2.1) is indeed true for ν > n − 1. Here we used the limit log Γ(am+b)
m logm → a, as

m → ∞, where a, b > 0. To verify this just observe that

lim
x→∞

log Γ(ax+ b)

x log x
= a lim

x→∞

ψ(ax+ b)

1 + log x

= a lim
x→∞

log(ax+ b)− 1
2(ax+b) +O(x−2)

log x
= a,

where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the Euler gamma function.
On the other hand, it is known (see [Bo, Theorem 2.9.2]) that if f is an entire
function and its growth order is finite and it is not equal to a positive integer,
then f has infinitely many zeros or f is a polynomial. Thus, using the fact that

the growth order of the real entire function xn−νJ
(n)
ν (x) is 1

2 and by the above-

mentioned result we obtain that J
(n)
ν (x) has infinitely many zeros when ν > n− 1.

Moreover, by (2.1) we obtain

J (n+1)
ν (x) =

xν−n
∏

m≥1

(
1− x2(

j
(n)
ν,m

)2

)

2νΓ(ν + 1− n)

⎛
⎜⎝ν − n

x
−

∑
m≥1

2x(
j
(n)
ν,m

)2

− x2

⎞
⎟⎠ ,

which implies that

(2.2)
J
(n+1)
ν (x)

J
(n)
ν (x)

=
ν − n

x
−

∑
m≥1

2x(
j
(n)
ν,m

)2

− x2

,

where ν > n, x is real (or complex) such that x �= 0, x �= j
(n)
ν,m, m ∈ N and n ∈ N0.

Now, we are going to conclude by induction on n that for ν > n all the zeros of
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J
(n+1)
ν (x) are real, provided that for ν > n− 1 all the zeros of J

(n)
ν (x) are real. For

this, we show first that for ν > n the zeros of J
(n+1)
ν (x) cannot be purely imaginary.

Indeed, letting J
(n+1)
ν (iy) = 0, where y ∈ R, y �= 0, from (2.2) we deduce that

0 = −i

⎛
⎜⎝ν − n+

∑
m≥1

2y2(
j
(n)
ν,m

)2

+ y2

⎞
⎟⎠ ,

which is a contradiction since ν > n and the zeros j
(n)
ν,m are real. Finally, we show

that for ν > n the zeros of J
(n+1)
ν (x) cannot be complex. Taking z = x+ iy, where

xy �= 0, a complex zero of J
(n+1)
ν (z) and denoting by ω =

(
j
(n)
ν,m

)2

− x2 + y2, by

(2.2) we have

z
J
(n+1)
ν (z)

J
(n)
ν (z)

= ν − n− 2
∑
m≥1

(x2 − y2)ω − 4x2y2

ω2 + 4x2y2
− 4ixy

∑
m≥1

ω + x2 − y2

ω2 + 4x2y2
= 0,

that is,

∑
m≥1

ω + x2 − y2

ω2 + 4x2y2
=

∑
m≥1

(
j
(n)
ν,m

)2

ω2 + 4x2y2
= 0,

which is a contradiction. Thus, for ν > n the zeros of J
(n+1)
ν (x) indeed are all real.

Now, we prove that these zeros are all simple, except the origin. If we suppose

that ρ �= 0 is a double zero of J
(n)
ν (z) it follows that the derivative of the quotient

J
(n)
ν (z)/J

(n−1)
ν (z) also vanishes at ρ. It is a contradiction since by (2.2) for ν > n−1

we have that

d

dz

(
J
(n)
ν (z)

J
(n−1)
ν (z)

)
= −ν − n+ 1

z2
− 2

∑
m≥1

(
j
(n−1)
ν,m

)2

+ z2((
j
(n−1)
ν,m

)2

− z2
)2 �= 0.

(b) Since the zeros of J
(n)
ν (x) are all real, it follows that the function Jν,n is in

the Laguerre-Pólya class of real entire functions as the exponential factors in the

infinite product are canceled because of the symmetry of the zeros ±j
(n)
ν,m, m ∈ N,

with respect to the origin. Now, since Jν,n ∈ LP, it follows that it satisfies the
Laguerre inequality [Sko, p. 67](

J
(k)
ν,n(x)

)2

− J
(k−1)
ν,n (x)J(k+1)

ν,n (x) > 0,

where n ∈ N0, k ∈ N, ν > n− 1 and x ∈ R. Choosing k = 1 in the above Laguerre
inequality we get(

xJ (n+1)
ν (x)

)2

− x2J (n+2)
ν (x)J (n)

ν (x) + (n− ν)
(
J (n)
ν (x)

)2

> 0,

which implies that(
J (n+1)
ν (x)

)2

− J (n+2)
ν (x)J (n)

ν (x) > (ν − n)
(
J (n)
ν (x)

)2

/x2 > 0,

where ν > n ≥ 0 and x �= 0. Consequently, the function J
(n+1)
ν (x)/J

(n)
ν (x) is strictly

decreasing on each interval
(
j
(n)
ν,m−1, j

(n)
ν,m

)
, m ∈ N (note that j

(n)
ν,0 = 0). On the
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other hand, for fixed m ∈ N the function J
(n+1)
ν (x)/J

(n)
ν (x) approaches ∞ when

x ↘ j
(n)
ν,m−1 and −∞ when x ↗ j

(n)
ν,m. Summarizing, for arbitrary m ∈ N the graph

of the restriction of the function J
(n+1)
ν (x)/J

(n)
ν (x) to each interval

(
j
(n)
ν,m−1, j

(n)
ν,m

)
intersects the horizontal axis only once, and the abscissa of this intersection point is

exactly j
(n+1)
ν,m . Thus we have proved that when ν > n the positive zeros of J

(n+1)
ν (x)

and J
(n)
ν (x) are interlacing.

The monotonicity of J
(n+1)
ν (x)/J

(n)
ν (x) can also be verified by using the Mittag-

Leffler expansion (2.2). Namely, we have

d

dx

(
J
(n+1)
ν (x)

J
(n)
ν (x)

)
= −ν − n

x2
− 2

∑
m≥1

(
j
(n)
ν,m

)2

+ x2

((
j
(n)
ν,m

)2

− x2

)2 < 0

for all ν > n, n ∈ N0 and x �= j
(n)
ν,m, m ∈ N0.

(c) Laguerre’s theorem on separation of zeros [Bo, p. 23] states that if f(z) is a
nonconstant entire function of genus 0 or 1, which is real for real z and has only
real zeros, then the zeros of f ′ are also real and are separated by the zeros of f.
The proof of part (a) shows that Jν,n is a real entire function of genus zero. Thus,
by using part (a) of this theorem and Laguerre’s separation theorem it follows that

the zeros of (n−ν)J
(n)
ν (x)+xJ

(n+1)
ν (x) are real when ν > n−1 and are interlacing

with the zeros of J
(n)
ν (x). �

Proof of Theorem 2. By (2.1) and Theorem 1 the function

Jν,n(2
√
x) = 2nΓ(ν + 1− n)x

n−ν
2 J (n)

ν (2
√
x)

=
∑
m≥0

(−1)mΓ(ν + 2m+ 1)Γ(ν + 1− n)xm

m!Γ(ν + 2m− n+ 1)Γ(ν +m+ 1)

belongs to the Laguerre-Pólya class LP. Consequently by using a well-known theo-
rem of Jensen (see [Je] or [DC, Theorem A]) it follows that the Jensen polynomial
of Jν,n(2

√
x) has only real zeros. Now, the Jensen polynomial in question is

s∑
m=0

(−1)m
(
s

m

)
Γ(ν + 2m+ 1)Γ(ν + 1− n)

Γ(ν + 2m− n+ 1)Γ(ν +m+ 1)
xm,

which after some transformations and in view of the Legendre duplication formula

(2.3) Γ(2x)
√
π = 22x−1Γ(x)Γ

(
x+ 1

2

)
can be rewritten as

3F3

(
−s,

ν + 1

2
,
ν

2
+ 1; ν + 1,

ν − n+ 1

2
,
ν − n

2
+ 1;x

)
.

Moreover, according to Csordas and Williamson [CW] the zeros of the Jensen poly-
nomials are simple. This completes the proof of the theorem. �

Proof of Theorem 3. (a) and (b) We know that for ν ∈
[
− 1

2 ,
1
2

]
all zeros of H′

ν(x)
are real and simple; see [BY]. For convenience we denote the mth positive zero of
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H
(n)
ν (x) by h

(n)
ν,m, where m ∈ N and n ∈ N0. Since

lim
m→∞

m logm

log 22m + log Γ
(
m+ 3

2

)
+ log Γ

(
m+ ν + 3

2

)
−Qn,m(ν)

=
1

2
,

where Qn,m(ν) = log |(2m+ ν + 1)(2m+ ν). . .(2m+ ν − n+ 2)| , the real entire
function

Hν,n(x) = 2ν+1xn−ν−1H(n)
ν (x)(2.4)

=
∑
m≥0

(−1)mΓ(ν + 2m+ 1)x2m

22mΓ
(
ν + 3

2

)
Γ(ν + 2m− n+ 2)Γ

(
ν +m+ 3

2

)
is of order 1

2 . By the Hadamard factorization theorem [Le, p. 26] it follows that
the following Weierstrassian decomposition is valid for appropiate values of ν (for
example ν ∈

[
− 1

2 ,
1
2

]
, ν �= 0) and n ∈ N:

(2.5) H(n)
ν (x) =

(ν + 1)ν · . . . · (ν − n+ 2)xν+1−n

√
π2νΓ

(
ν + 3

2

) ∏
m≥1

(
1− x2

(h
(n)
ν,m)2

)
.

Thus, H
(n)
ν (x) has infinitely many zeros. By using the fact that all zeros of H

(n)
ν (x)

are real (and simple) when n = 1, it follows that for n = 1 the function Hν,n is
in the Laguerre-Pólya class of real entire functions (the exponential factors in the

infinite product are canceled because of the symmetry of the zeros ±h
(n)
ν,m, m ∈ N,

with respect to the origin). Now, since for n = 1 we have Hν,n ∈ LP, it satisfies
the Laguerre inequality [Sko, p. 67](

H
(k)
ν,n(x)

)2

−H
(k−1)
ν,n (x)H(k+1)

ν,n (x) > 0,

where n = 1, k ∈ N, ν ∈
[
− 1

2 ,
1
2

]
and x ∈ R. Choosing k = 1 in the above Laguerre

inequality we get(
xH(n+1)

ν (x)
)2

− x2H(n+2)
ν (x)H(n)

ν (x) + (n− ν − 1)
(
H(n)

ν (x)
)2

> 0,

which implies that(
H(n+1)

ν (x)
)2

−H(n+2)
ν (x)H(n)

ν (x) > (ν + 1− n)
(
H(n)

ν (x)
)2

/x2 > 0,

where ν ∈
(
0, 1

2

]
and x �= 0. Consequently, if n = 1 the function H

(n+1)
ν (x)/H

(n)
ν (x)

is strictly decreasing on each interval
(
h
(n)
ν,m−1, h

(n)
ν,m

)
, m ∈ N. Here we used h

(n)
ν,0 =

0. Since the zeros of H′
ν are simple, the function H′′

ν does not vanish in h′
ν,m. On

the other hand, for n = 1 and for fixed m ∈ N the function H
(n+1)
ν (x)/H

(n)
ν (x)

approaches ∞ when x ↘ h
(n)
ν,m−1 and −∞ when x ↗ h

(n)
ν,m. Summarizing, for n = 1

and arbitrary m ∈ N the graph of the restriction of the function H
(n+1)
ν (x)/H

(n)
ν (x)

to each interval
(
h
(n)
ν,m−1, h

(n)
ν,m

)
intersects the horizontal axis only once. The ab-

scissa of this intersection point is exactly h
(n+1)
ν,m . Moreover, it is clear that the

zeros h
(n+1)
ν,m are simple because of the above monotonicity and limit properties.

Concerning the distribution of the zeros, an analogous procedure shows that on the
semi-axis (−∞, 0) we have a similar situation to the semi-axis (0,∞). Thus we have
proved that for ν ∈

(
0, 1

2

]
all zeros of H′′

ν(x) are real and simple. Therefore the
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proof of part (a) becomes complete, moreover, we have also proved the statement
of part (b).

(c) According to the above proof we know that Hν,n is a real entire function of
genus zero. Thus, for n ∈ {0, 1} and ν ∈

[
− 1

2 ,
1
2

]
by using the fact that the zeros of

H
(n)
ν are all real and the Laguerre separation theorem, one obtains that the zeros

of (n− ν − 1)H
(n)
ν (x) + xH

(n+1)
ν (x) are real when ν ∈

[
− 1

2 ,
1
2

]
and n ∈ {0, 1} and

are interlacing with the zeros of H
(n)
ν (x). �

Proof of Theorem 4. The nth derivative with respect to the argument of the Struve

function of order ν, denoted by H
(n)
ν (x), is the power series

xν−n+1

2ν+1

∑
m≥0

(−1)mΓ(2m+ ν + 2) x2m

22mΓ(m+ 3
2 )Γ(m+ ν + 3

2 )Γ(2m+ ν − n+ 2)

=
xν−n+1

2ν−n+1

∑
m≥0

(−1)mΓ(m+ ν
2 + 1)Γ(m+ ν

2 + 3
2 ) x

2m

22mΓ(m+ 3
2 )Γ(m+ ν + 3

2 )Γ(m+ ν−n
2 + 1)Γ(m+ ν−n

2 + 3
2 )

,

where the duplication formula (2.3) is employed in both numerator and denomina-

tor. This means that H
(n)
ν (2

√
x) can be written as

21−n Γ(ν + 2) x
ν−n+1

2

√
π Γ(ν + 3

2 )Γ(ν − n+ 2)

∑
m≥0

(−1)m(1)m( ν2 + 1)m( ν2 + 3
2 )m

( 32 )m(ν + 3
2 )m( ν−n

2 + 1)m( ν−n
2 + 3

2 )m

xm

m!
,

where ν − n+ 2 �= {0,−1, . . . }, and we have the auxiliary function

Hν,n(2
√
x) =

√
π Γ(ν + 3

2 )

21−n Γ(ν + 2)
Γ(ν − n+ 2) x

n−ν−1
2 H(n)

ν (2
√
x)

= 3F4

(
1, ν

2 + 1, ν
2 + 3

2
3
2 , ν + 3

2 ,
ν−n
2 + 1, ν−n

2 + 3
2

;x

)
.

We recognize the coefficients in the associated Jensen polynomial [CVV, p. 113]

γm =
(−1)m(1)m( ν2 + 1)m( ν2 + 3

2 )m

( 32 )m(ν + 3
2 )m( ν−n

2 + 1)m( ν−n
2 + 3

2 )m
.

The related Jensen polynomial becomes the Laguerre-type hypergeometric polyno-
mial

PH
s (x;n) =

s∑
m=0

(−1)m
(
s

m

)
γm xm

= 4F4

(
−s, 1, ν

2 + 1, ν
2 + 3

2
3
2 , ν + 3

2 ,
ν−n
2 + 1, ν−n

2 + 3
2

;x

)
.(2.6)

The special case n = 0 simplifies to

PH
s (x; 0) = 2F2

(
−s, 1;

3

2
, ν +

3

2
;x

)
,

while, for n = 1 we have

PH
s (x; 1) = 3F3

(
−s, 1,

ν

2
+

3

2
;
3

2
, ν +

3

2
,
ν

2
+

1

2
;x

)
.
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Now, by using the fact that for ν ∈
[
− 1

2 ,
1
2

]
the zeros of Hν and H′

ν are real and

also part (a) of Theorem 3 it follows that the function Hν,n(2
√
x) belongs to the

Laguerre-Pólya class LP under the assumption that ν ∈
[
− 1

2 ,
1
2

]
and n ∈ {0, 1},

or ν ∈
(
0, 1

2

]
and n = 2. Consequently by using the theorem of Jensen (see [Je]

or [DC, Theorem A]) it follows that the Jensen polynomial PH
s (x;n) has only

real zeros. Now, the hypergeometric nature of the Jensen polynomial PH
s (x;n) in

question is shown in (2.6). Moreover, according to Csordas and Williamson [CW]
the zeros of the Jensen polynomials are simple. This completes the proof of the
theorem. �

Proof of Theorem 5. By equating the infinite series and the infinite product repre-
sentation for Hν(z) given by [BPS]

√
π2νx−ν−1Γ

(
ν +

3

2

)
Hν(x) =

∏
n≥1

(
1− x2

h2
ν,n

)

and

Hν(x) =
(x
2

)ν+1 ∑
n≥0

(−1)n
(
x
2

)2n
Γ
(
n+ 3

2

)
Γ
(
n+ ν + 3

2

) ,
we obtain

1

Γ( 32 )Γ(ν + 3
2 )

−
(x2 )

2

3
2Γ(

3
2 )Γ(ν + 3

2 )(ν + 3
2 )

+ . . .

=
2√

πΓ(ν + 3
2 )

(
1− x2

h2
ν,1

)(
1− x2

h2
ν,2

)
. . .

or equivalently

1−
(x
2

)2 22

3(2ν + 3)
+
(x
2

)4 24

3 · 5(2ν + 3)(2ν + 5)
+ . . .

= 1− x2
∑
n≥1

1

h2
ν,n

+ x4
∑
n≥1

1

h2
ν,n

∑
k≥1, k �=n

1

h2
ν,k

+ . . . .

The coefficients of the same powers of x must be equal, so the equality of the
coefficients of x2 proves the first relation of the theorem, and the equality of the
coefficients of x4 gives∑

n≥1

1

h2
ν,n

∑
k≥1, k �=n

1

h2
ν,k

=
1

15(2ν + 3)(2ν + 5)
.

Since the zeros hν,n are symmetric around the origin and because of the first
Rayleigh sum of hν,n-s, the previous equation becomes

1

2

∑
n≥1

1

h2
ν,n

⎛
⎝∑

k≥1

1

h2
ν,k

− 1

h2
ν,n

⎞
⎠ =

1

15(2ν + 3)(2ν + 5)
.

Using the first Rayleigh sum again, it finally becomes the second Rayleigh sum as
in the statement of the theorem.

To prove the relations on the Rayleigh sums of the zeros of H′
ν we first equate

the infinite sum and the infinite product representations of H′
ν given by (2.4) and
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(2.5), that is, ∑
n≥0

(−1)n(2n+ ν + 1)(x2 )
2n

(ν + 1)( 32 )n(ν + 3
2 )n

=
∏
n≥1

(
1− x2

(h′
ν,n)

2

)

or equivalently

1−
(x
2

)2 (ν + 3)

(ν + 1)( 32 )1(
ν+3
2 )1

+
(x
2

)4 (ν + 5)

(ν + 1)( 32 )2(
ν+3
2 )2

+ . . .

= 1− x2
∑
n≥1

1

(h′
ν,n)

2
+ x4

∑
n≥1

1

(h′
ν,n)

2

∑
k≥1, k �=n

1

(h′
ν,k)

2
+ . . . .

The equality of the coefficients of the same power of x on both sides gives the
desired relations for the zeros of H′

ν .
Finally, to deduce the first two Rayleigh sums for the zeros of H′′

ν we proceed
similarly to what was done above. �
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