Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Morava $ E$-homology of Bousfield-Kuhn functors on odd-dimensional spheres


Author: Yifei Zhu
Journal: Proc. Amer. Math. Soc. 146 (2018), 449-458
MSC (2010): Primary 55S25; Secondary 55N20, 55N34, 55Q51
DOI: https://doi.org/10.1090/proc/13727
Published electronically: August 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: As an application of Behrens and Rezk's spectral algebra model for unstable $ v_n$-periodic homotopy theory, we give explicit presentations for the completed $ E$-homology of the Bousfield-Kuhn functor on odd-dimensional spheres at chromatic level $ 2$, and compare them to the level $ 1$ case. The latter reflects earlier work in the literature on $ K$-theory localizations.


References [Enhancements On Off] (What's this?)

  • [1] Gregory Arone, Taylor towers in situations when Tate homology vanishes, available at https://www.youtube.com/watch?v=aQd-bDbL4L4.
  • [2] Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743-788. MR 1669268, https://doi.org/10.1007/s002220050300
  • [3] Gregory Arone and Michael Ching, A classification of Taylor towers of functors of spaces and spectra, Adv. Math. 272 (2015), 471-552. MR 3303239, https://doi.org/10.1016/j.aim.2014.12.007
  • [4] Gregory Arone and Michael Ching, Localized Taylor towers, in preparation.
  • [5] A. O. L. Atkin and J. Lehner, Hecke operators on $ \Gamma _{0}(m)$, Math. Ann. 185 (1970), 134-160. MR 0268123, https://doi.org/10.1007/BF01359701
  • [6] Mark Behrens and Charles Rezk, The Bousfield-Kuhn functor and topological André-Quillen cohomology, available at http://www3.nd.edu/~mbehren1/papers/BKTAQ6.pdf (version: 2015-06-11).
  • [7] -, Spectral algebra models of unstable $ v_n$-periodic homotopy theory. arXiv 1703.02186
  • [8] A. K. Bousfield, The $ K$-theory localizations and $ v_1$-periodic homotopy groups of $ H$-spaces, Topology 38 (1999), no. 6, 1239-1264. MR 1690156, https://doi.org/10.1016/S0040-9383(98)00052-4
  • [9] A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391-2426. MR 1814075, https://doi.org/10.1090/S0002-9947-00-02649-0
  • [10] A. K. Bousfield, On the 2-primary $ v_1$-periodic homotopy groups of spaces, Topology 44 (2005), no. 2, 381-413. MR 2114954, https://doi.org/10.1016/j.top.2004.10.003
  • [11] Donald M. Davis, Computing $ v_1$-periodic homotopy groups of spheres and some compact Lie groups, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 993-1048. MR 1361905, https://doi.org/10.1016/B978-044481779-2/50021-3
  • [12] Paul G. Goerss, Simplicial chains over a field and $ p$-local homotopy theory, Math. Z. 220 (1995), no. 4, 523-544. MR 1363853, https://doi.org/10.1007/BF02572629
  • [13] Gijsbert Heuts, Goodwillie approximations to higher categories, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)-Harvard University. MR 3450458
  • [14] Gijsbert Heuts, Periodicity in unstable homotopy theory, in preparation.
  • [15] Mark Hovey, Morava $ E$-theory of filtered colimits, Trans. Amer. Math. Soc. 360 (2008), no. 1, 369-382. MR 2342007, https://doi.org/10.1090/S0002-9947-07-04298-5
  • [16] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569
  • [17] Igor Kříž, $ p$-adic homotopy theory, Topology Appl. 52 (1993), no. 3, 279-308. MR 1243609, https://doi.org/10.1016/0166-8641(93)90108-P
  • [18] Nicholas J. Kuhn, Goodwillie towers and chromatic homotopy: an overview, Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, pp. 245-279. MR 2402789, https://doi.org/10.2140/gtm.2007.10.245
  • [19] Nicholas J. Kuhn, A guide to telescopic functors, Homology Homotopy Appl. 10 (2008), no. 3, 291-319. MR 2475626
  • [20] Michael A. Mandell, $ E_\infty $ algebras and $ p$-adic homotopy theory, Topology 40 (2001), no. 1, 43-94. MR 1791268, https://doi.org/10.1016/S0040-9383(99)00053-1
  • [21] Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031, https://doi.org/10.2307/1970725
  • [22] Charles Rezk, The congruence criterion for power operations in Morava $ E$-theory, Homology Homotopy Appl. 11 (2009), no. 2, 327-379. MR 2591924
  • [23] Charles Rezk, Rings of power operations for Morava $ E$-theories are Koszul. arXiv 1204.4831
  • [24] Charles Rezk, Power operations in Morava $ E$-theory: structure and calculations, available at http://www.math.uiuc.edu/~rezk/power-ops-ht-2.pdf (version: 2013-09-13).
  • [25] Charles Rezk, Elliptic cohomology and elliptic curves, Felix Klein Lectures, Bonn 2015, available at http://www.math.uiuc.edu/~rezk/felix-klein-lectures-notes.pdf (version: 2016-06-06).
  • [26] Paul Selick, Moore conjectures, Algebraic topology--rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 219-227. MR 952582, https://doi.org/10.1007/BFb0077805
  • [27] N. P. Strickland, Morava $ E$-theory of symmetric groups, Topology 37 (1998), no. 4, 757-779. MR 1607736, https://doi.org/10.1016/S0040-9383(97)00054-2
  • [28] Guozhen Wang, The monochromatic Hopf invariant. arXiv 1410.7292
  • [29] -, Unstable chromatic homotopy theory, ProQuest LLC, Ann Arbor, MI, 2015, Thesis (Ph.D.)-Massachusetts Institute of Technology. MR 3427198
  • [30] Yifei Zhu, The Hecke algebra action on Morava $ E$-theory of height 2. arXiv 1505.06377
  • [31] -, Modular equations for Lubin-Tate formal groups at chromatic level 2. arXiv 1508.03358

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55S25, 55N20, 55N34, 55Q51

Retrieve articles in all journals with MSC (2010): 55S25, 55N20, 55N34, 55Q51


Additional Information

Yifei Zhu
Affiliation: Department of Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
Email: zhuyf@sustc.edu.cn

DOI: https://doi.org/10.1090/proc/13727
Received by editor(s): January 22, 2017
Received by editor(s) in revised form: February 19, 2017, and March 6, 2017
Published electronically: August 1, 2017
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society