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ON THE AVERAGE SIZE OF INDEPENDENT SETS

IN TRIANGLE-FREE GRAPHS

EWAN DAVIES, MATTHEW JENSSEN, WILL PERKINS, AND BARNABY ROBERTS

(Communicated by Patricia Hersh)

Abstract. We prove an asymptotically tight lower bound on the average size
of independent sets in a triangle-free graph on n vertices with maximum degree
d, showing that an independent set drawn uniformly at random from such a

graph has expected size at least (1 + od(1))
log d
d

n. This gives an alternative

proof of Shearer’s upper bound on the Ramsey number R(3, k). We then
prove that the total number of independent sets in a triangle-free graph with

maximum degree d is at least exp
[(

1
2
+ od(1)

) log2 d
d

n
]
. The constant 1/2 in

the exponent is best possible. In both cases, tightness is exhibited by a random

d-regular graph.
Both results come from considering the hard-core model from statistical

physics: a random independent set I drawn from a graph with probability
proportional to λ|I|, for a fugacity parameter λ > 0. We prove a general lower
bound on the occupancy fraction (normalized expected size of the random
independent set) of the hard-core model on triangle-free graphs of maximum
degree d. The bound is asymptotically tight in d for all λ = Od(1).

We conclude by stating several conjectures on the relationship between the
average and maximum size of an independent set in a triangle-free graph and
give some consequences of these conjectures in Ramsey theory.

1. Introduction

1.1. Independent sets in triangle-free graphs. Ajtai, Komlós, and Szemerédi
[1] proved that any triangle-free graph G on n vertices with average degree d has

an independent set of size at least c log d
d n for a small constant c. Shearer [23]

later improved the constant to 1 asymptotically as d → ∞, showing that such a
graph has an independent set of size at least f(d) · n where f(d) = d log d−d+1

(d−1)2 =

(1+ od(1))
log d
d . Here, and in what follows, logarithms will always be to base e. We

use standard asymptotic notation, with subscripts indicating which parameters the
implied functions depend on. For example we write od(1) for a quantity that tends
to zero as d tends to infinity.

The off-diagonal Ramsey number R(3, k) is the least integer n such that any
graph on n vertices contains either a triangle or an independent set of size k.
The above result of Ajtai, Komlós, and Szemerédi and a result of Kim [17] show
that R(3, k) = Θ(k2/ log k). Shearer’s result gives the current best upper bound,
showing that R(3, k) ≤ (1 + o(1))k2/ log k. Independent work of Bohman and
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Keevash [6] and Fiz Pontiveros, Griffiths, and Morris [12] shows that R(3, k) ≥
(1/4 + o(1))k2/ log k. Reducing the factor 4 gap between these bounds is a major
open problem in Ramsey theory.

We prove a lower bound on the average size of an independent set in a triangle-
free graph of maximum degree d, matching the asymptotic form of Shearer’s result,
and in turn giving an alternative proof of the above upper bound on R(3, k).

Theorem 1. Let G be a triangle-free graph on n vertices with maximum degree d.
Let I(G) be the set of all independent sets of G. Then

1

|I(G)|
∑

I∈I(G)

|I| ≥ (1 + od(1))
log d

d
n.

Moreover, the constant ‘1’ is best possible.

This result is weaker than Shearer’s [23] in that instead of average degree d we
require maximum degree d. Our result is stronger in that we show that the average
size of an independent set from such a graph is of size at least (1 + od(1))

log d
d n,

while Shearer shows the largest independent set is of at least this size (by analyzing
a randomized greedy algorithm).

The proof of Theorem 1 is an adaptation of the authors’ method used in [11] to
give a strengthening of results of Kahn [15] and Zhao [26] that a d-regular graph
has at most as many independent sets as a disjoint union of Kd,d’s on the same
number of vertices. We make this explicit in section 2, giving a unified method for
proving these classical results of Shearer and Kahn. After sharing a draft of this
paper with colleagues, we discovered that James Shearer also knew the proof of the
lower bound in Theorem 1 and presented a sketch of it at the SIAM Conference on
Discrete Mathematics in 1998, but never published it [22].

To see that Theorem 1 directly implies the upper bound (1 + o(1))k2/ log k on
R(3, k), suppose that G is triangle-free with no independent set of size k. Then G
must have maximum degree less than k. Applying Theorem 1 we see the indepen-

dence number is at least (1+ok(1))
log k
k n but less than k, and so n < (1+ok(1))

k2

log k

as required. Of course this reasoning simply uses the average size of an independent
set as a lower bound for the maximum size. In section 5 we consider whether the
discrepancy between the maximum and average size can be exploited to improve
the upper bound on R(3, k).

After bounding the average size of an independent set from G, we next give lower
bounds on the total number of independent sets in G, |I(G)|.

Theorem 2. Let G be a triangle-free graph on n vertices with maximum degree d.
Then

|I(G)| ≥ e(
1
2+od(1)) log2 d

d n.

Moreover, the constant 1/2 in the exponent is best possible.

In comparison, improving on previous results of Cooper and Mubayi [9], Cooper,
Dutta, and Mubayi [8] proved that any triangle-free graph of average degree d has

at least e(
1
4+od(1)) log2 d

d n independent sets.
As a simple corollary we get the following lower bound without degree restric-

tions.
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Corollary 1. Let G be a triangle-free graph on n vertices. Then

|I(G)| ≥ e

(√
2 log 2
4 +o(1)

)√
n logn

.

This improves on a result of Cooper, Dutta, and Mubayi [8] by a factor of
√
2 in

the exponent; they also provide a construction based on the analysis of the triangle-
free process in [6,12] showing that the optimal constant is at most 1+log 2 ≈ 1.693

(as compared to the constant
√
2 log 2
4 ≈ .294 in Corollary 1).

In section 4 we show that the constants ‘1’ in Theorem 1 and ‘1/2’ in Theorem 2
are best possible, using the random d-regular graph (with d fixed as the number of
vertices tends to infinity) as an example. It remains an interesting open question
to determine whether these constants are tight when the degree of the graph grows
with the number of vertices, for example, if d = nc for some c ∈ (0, 1).

1.2. The hard-core model. Theorems 1 and 2 are special cases of results on
a more general model from statistical physics: the hard-core distribution on the
independent sets I of a graph G. For more on the hard-core model and its links
with statistical physics and combinatorics, see [7]. The distribution depends on a
fugacity parameter λ > 0 and is given by

Pr[I] =
λ|I|∑

J∈I λ|J| .

The denominator, PG(λ) =
∑

J∈I λ|J|, is the partition function of the hard-core
model on G (also called the independence polynomial of G). If λ = 1, the par-
tition function PG(1) is the total number of independent sets, and the hard-core
distribution is simply the uniform distribution over all independent sets of G.

In what follows G will always be a graph on n vertices. We write α(G) for the
size of the largest independent set in G. The expected size of an independent set
drawn from the hard-core model on G at fugacity λ is

(1) αG(λ) :=
∑
I∈I

|I| · Pr[I] =
∑

I∈I |I|λ|I|

PG(λ)
=

λP ′
G(λ)

PG(λ)
= λ · (logPG(λ))

′ .

The key result of this paper is the following general lower bound on αG(λ) for
triangle-free graphs. The lower bound is written naturally in terms of the Lambert
W function, W (z): for z > 0, W (z) denotes the unique positive real satisfying
the relation W (z)eW (z) = z. It will be useful to note that for z ≥ e we have
W (z) ≥ log z − log log z.

Theorem 3. Let G be a triangle-free graph with maximum degree d. Then for any
λ > 0,

(2)
1

n
αG(λ) ≥

λ

1 + λ

W (d log(1 + λ))

d log(1 + λ)
.

The quantity 1
nαG(λ), the expected fraction of vertices of G in the random

independent set, is known as the occupancy fraction of G at fugacity λ.
It is interesting to note that the lower bound in Theorem 3 is not monotone in λ,

whereas for any graph G, αG(λ) is monotone increasing (see Proposition 1). Simply
substituting λ = 1 into (2) does not quite suffice to prove Theorem 1. Surprisingly
it turns out to be better to use a smaller λ and then appeal to the monotonicity
of αG(λ). As an example, using λ = 1/ log d in (2) is enough to prove Theorem 1.
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This shows that Theorem 1 holds even when we replace the average size of an
independent set with a weighted average biased toward small sets. In fact we can
afford to use λ as small as d−o(1). For smaller λ the lower bound in Theorem 3
becomes asymptotically weaker. For example taking λ = d−s where s ∈ (0, 1) is

fixed, (2) gives αG(λ) ≥ (1− s+ od(1))
log d
d n. This lower bound is tight, and we in

fact show that Theorem 3 (extended by monotonicity) is asymptotically tight for
all λ = Od(1) in section 4.

Turning to Theorem 2 and the problem of counting independent sets, we again
give a more general statement about the hard-core model. We bound the partition
function of a triangle-free graph at any fugacity λ using the fact that the occupancy
fraction is the scaled logarithmic derivative of the partition function. Indeed from
(1) it follows that

(3)
1

n
logPG(λ) =

1

n

∫ λ

0

αG(t)

t
dt.

Using the lower bound on the occupancy fraction from Theorem 3 in the integral
above gives the lower bound on the partition function which we state below, noting
that Theorem 2 is a direct consequence.

Theorem 4. Let G be a triangle-free graph on n vertices with maximum degree d.
Then for all λ > 0,

PG(λ) ≥ exp
([

W (d log(1 + λ))2 + 2W (d log(1 + λ))
] n

2d

)
.

In particular, taking λ = 1, we see that G has at least e(
1
2+od(1)) log2 d

d n independent
sets.

2. Lower bounds on the occupancy fraction

The proof of Theorem 3 begins in the same way as the triangle-free case of the
proof in [11] that the occupancy fraction of the hard-core model on any d-regular
graph is at most that of Kd,d. The main difference is that in the last step we ask
for the minimum instead of the maximum of the same constrained optimization
problem. The method is similar to that of Shearer [24] in lower bounding the
independence number of Kr-free graphs and that of Alon [3] in lower bounding the
independence number of graphs of average degree d in which neighborhoods are r-
colorable. Alon and Spencer [4] used this technique to give a result like Theorem 1
but with a worse constant. See also chapters 21 and 22 of [19] for an exposition
of some of these results, and [18] for a recent application to hypergraphs. Unlike
in previous works, in this paper we use the full power of choosing the fugacity
parameter λ, rather than considering only the uniform distribution.

There are two key steps: First, we define a random variable that depends on
two sources of randomness: the random independent set drawn from the hard-core
model on G and a uniformly chosen random vertex v ∈ V (G). We then express
the occupancy fraction in terms of two different expectations involving this random
variable. This gives a constraint on the distribution of the random variable. We
then optimize over all random variables that satisfy the constraint and deduce a
bound on the occupancy fraction.
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Recall that αG(λ) is the expected size of an independent set drawn from the
hard-core model on G at fugacity λ, and 1

nαG(λ) is the occupancy fraction. In
places where no confusion should arise we omit G from the notation.

Proof of Theorem 3. Let I be an independent set of G drawn from the hard-core
model at fugacity λ. For any vertex v in G, consider I0 = I \ N(v) (noting that
I0 may include v itself). We say a vertex v is occupied if v ∈ I and unoccupied
otherwise. Furthermore we say v is uncovered if N(v)∩I = ∅ and covered otherwise.
Note that if v is covered, it must be unoccupied. We begin by stating some basic
properties of the hard-core model.

Fact 1: Pr[v ∈ I|v uncovered] = λ
1+λ .

This follows from the observation that for any realization of I0 under the event that
v is uncovered, there are exactly two possibilities for I, I = I0 and I = I0 ∪ {v},
since v is uncovered and so may be added.

Fact 2: Pr[v uncovered|v has j uncovered neighbors] = (1 + λ)−j .

First note that the event that v is uncovered is the same as the event that its un-
covered neighbors are all unoccupied. The probability that an uncovered neighbor
of v is unoccupied is 1

1+λ by Fact 1. Moreover, since G is triangle free the uncov-
ered neighbors of v form an independent set, and so they are in fact unoccupied
independently with probability 1

1+λ .
We now write the occupancy fraction as

1

n
α(λ) =

1

n

∑
v∈G

Pr[v ∈ I](4)

=
λ

1 + λ
· 1
n

∑
v∈G

Pr[v uncovered](5)

=
λ

1 + λ
· 1
n

∑
v∈G

d∑
j=0

Pr[v has j uncovered neighbors] · (1 + λ)−j(6)

where (5) follows from Fact 1 and (6) from Fact 2. Now let Z be the random variable
that counts the number of uncovered neighbors of a uniformly chosen vertex v. Z
has two layers of randomness: that of I drawn from the hard-core measure and that
of selecting v at random. Interpreting the RHS of (6) in terms of Z, we obtain

(7)
1

n
α(λ) =

λ

1 + λ
E[(1 + λ)−Z ] .

An alternative way to relate the occupancy fraction to Z is to observe that in
the sum

∑
v

∑
u∼v Pr[u ∈ I] each vertex u appears deg(u) times. Any uncovered

neighbor of v is occupied with probability λ
1+λ by Fact 1, and any covered neighbor

is occupied with probability zero. Then since G has maximum degree d we have

(8)
1

n
α(λ) =

1

n

∑
v∈G

Pr[v ∈ I] ≥ 1

dn

∑
v

∑
u∼v

Pr[u ∈ I] =
λ

1 + λ

EZ

d
.

We aim to minimize the occupancy fraction subject to the constraints on the
distribution of Z given by (7) and (8). In fact we relax the optimization problem to
optimize over all distributions of random variables Z that satisfy these constraints,
not only those that arise from the hard-core model on a graph.



116 E. DAVIES, M. JENSSEN, W. PERKINS, AND B. ROBERTS

In the calculation below we show that Jensen’s inequality applied to (7) implies
that the minimizer is achieved by the unique constant random variable Z that
satisfies the constraints with equality. From (7) and (8) we have

1 + λ

λ
· 1
n
α(λ) ≥ max

{
EZ

d
, (1 + λ)−EZ

}
≥ min

x∈R+
max

{x

d
, (1 + λ)−x

}
.

To compute the minimum observe that the first of our lower bounds is increasing in
x and the second is decreasing. Then the minimum occurs at the value of x which
makes the two bounds equal, i.e. the x that satisfies

xelog(1+λ)x = d

and hence

log(1 + λ)x = W (d log(1 + λ)).

The result follows. �

A simple observation is the fact that lower bounds at a small fugacity λ imply
the same bounds at higher fugacities.

Proposition 1. For any graph G, the expected size of an independent set αG(λ)
is monotone increasing in λ.

Proof. We will show that the derivative of α(λ) with respect to λ is positive. We
write (using P for PG(λ))

α′(λ) =

(
λP ′

P

)′
=

P ′

P
+

λPP ′′ − λ(P ′)2

P 2

=
P ′

P
+

1

λ

(
λ2P ′′

P
−
(
λP ′

P

)2
)

=
E(|I|) + E(|I|2)− E(|I|)− (E(|I|))2

λ

=
Var(|I|)

λ
≥ 0

where I is a random independent set drawn from the hard-core model at fugacity
λ. �

Now using Theorem 3 and Proposition 1 we prove the main statement of Theorem
1. We leave the proof of tightness to section 4.

Proof of Theorem 1. Substituting λ = 1/ log d in (2) and recalling the bound W (z)
≥ log z − log log z for z ≥ e we obtain

1

n
αG(λ) ≥ (1 + o(1))

log d

d
.

The result then follows from the monotonicity given by Proposition 1. �

So far we have been concerned with lower bounds on the occupancy fraction of
a triangle-free graph of maximum degree d. In [11] the current authors considered
upper bounds, showing that the occupancy fraction of a d-regular graph is at most
that of Kd,d. The proof method is essentially identical to the proof of Theorem 3.
To make this connection explicit, we give a proof of the upper bound result here,
restricted to the triangle-free case.
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Theorem 5 ([11]). Let G be a d-regular triangle-free graph. Then for any λ > 0

1

n
αG(λ) ≤

1

2d
αKd,d

(λ)

with equality only if G is a disjoint union of copies of Kd,d.

Proof. Note that since G is triangle free, equation (7) holds for G and since G is
d-regular, (8) holds with equality throughout. That is we have

(9)
1

n
αG(λ) =

λ

1 + λ

EZ

d
=

λ

1 + λ
E[(1 + λ)−Z ],

where we recall that Z is a random variable bounded between 0 and d. Now instead
of asking for the minimum value of 1

nαG(λ) over all distributions of Z as we did
in the proof of Theorem 3, we ask instead for the maximum. Note that since
0 ≤ Z/d ≤ 1 convexity of the function x �→ (1 + λ)−x implies that

(10) (1 + λ)−Z ≤ Z

d
(1 + λ)−d + 1− Z

d
.

Substituting this into (9) and using linearity of expectation yield

(11)
1

n
αG(λ) =

λ

1 + λ

EZ

d
≤ λ(1 + λ)d−1

2(1 + λ)d − 1
,

where one can check that the right hand side is the occupancy fraction of Kd,d.
For uniqueness, note that to have equality in (11) we must have had equality in
(10), which is only possible if Z takes only the values 0 and d. This distribution
of Z can only occur in a disjoint union of copies of Kd,d. To see this recall that Z
is the number of uncovered neighbors of a randomly selected vertex v. The only
way every vertex v can always have either 0 or d uncovered neighbors is for all the
neighbors of v to have the same neighborhood. For d-regular graphs this property
holds only in graphs consisting of disjoint unions of Kd,d. �

Note that by the integral in (3), Theorem 5 immediately implies that for a
triangle-free graph G, 1

n logPG(λ) ≤ 1
2d logPKd,d

(λ). Taking λ = 1 implies that G
has at most as many independent sets as a disjoint union of copies of Kd,d on the
same number of vertices. This last statement was famously proved by Kahn [15]
(in the case where G is bipartite) using the entropy method.

3. Counting independent sets

In this section we prove the main statement of Theorem 4 (and hence Theorem 2)
by integrating the lower bound on the occupancy fraction of a triangle-free graph
given in Theorem 3. Again, the proof of tightness is deferred to section 4. We also
prove Corollary 1.

Proof of Theorem 4. By (3) and Theorem 3 we have

logPG(λ) ≥
n

d

∫ λ

0

W (d log(1 + t))

(1 + t) log(1 + t)
dt(12)

=
n

d

∫ W (d log(1+λ))

0

(1 + u) du(13)

=
n

2d

[
W (d log(1 + λ))2 + 2W (d log(1 + λ))

]
(14)
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where for the first equality we used the substitution u = W (d log(1 + t)). In
particular when λ = 1, using the inequality W (z) ≥ log z − log log z for z ≥ e, we
have

logPG(λ) ≥
(
1

2
+ od(1)

)
log2 d

d
n. �

Proof of Corollary 1. In a triangle-free graph the neighborhood of any vertex forms
an independent set. Let d be the largest degree of a vertex in G. Then we have the
bound

PG(λ) ≥ max
{
(1 + λ)d, exp

[ n

2d
W (d log(1 + λ))2

]}
by considering the neighborhood of a vertex of maximum degree and by inequality
(14). The first expression is increasing in d while the second is decreasing, and at

d =
1

2

√
n

2 log(1 + λ)
log

(
n log(1 + λ)

2

)

they are equal. It follows that for λ > 0,

(15) PG(λ) ≥ exp

[
1

2

√
n log(1 + λ)

2
log

(
n log(1 + λ)

2

)]
.

Take λ = 1 to complete the proof. �

Inequality (15) may be of independent interest, giving a general lower bound for
the independence polynomial of a triangle-free graph on n vertices.

4. Random regular graphs

Here we will show that the constants in Theorems 1 to 4 are tight, as evidenced
by the random d-regular graph (conditioned on having no triangles).

To do this, we first leave the world of finite graphs and consider the hard-core
model on the infinite d-regular tree Td. The hard-core model can be defined on
an infinite graph by taking the limit of hard-core models on a growing sequence of
finite graphs (in this case d-regular trees of increasing depth) with some boundary
conditions specified. There is a unique translation invariant hard-core measure on
the infinite d-regular tree (see e.g. [16]), and under this measure the probability that
any given vertex is in the independent set is αTd

(λ), where αTd
(λ) is the solution

of the equation

λ =
α

(1− α)

(
1− α

1− 2α

)d

.(16)

Using αTd
to denote the occupancy fraction of the infinite d-regular tree is standard;

however we note that our notation for the analogous quantity 1
nαG(λ) in a finite

graph G on n vertices includes the scaling 1/n. We compare the lower bound in
Theorem 3 to αTd

(λ):

Proposition 2. For every triangle-free graph G of maximum degree d and any
λ = Od(1),

1

n
αG(λ) ≥ (1 + od(1))αTd

(λ).
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In the language of statistical physics, αTd
(λ) is the replica symmetric occupancy

fraction of a d-regular graph of large girth. Extremality of a replica symmetric
solution has been proved in several contexts including [10,21,25] but usually requires
a condition such as an attractive potential function (e.g. the ferromagnetic Ising
model) or bipartiteness in the case of the hard-core or monomer-dimer models.
Proposition 2 states that in fact under very minimal conditions (triangle free),
the replica symmetric solution is a lower bound to the true occupancy fraction
for all λ = Od(1), at least asymptotically in d. This result can be compared
with [11, Theorem 2], where we used stronger assumptions, showing that a d-
regular, vertex-transitive bipartite graph has occupancy fraction strictly greater
than αTd

(λ), though we only believe that result is best possible for λ below the

uniqueness threshold on the tree, λ ≤ (d−1)d−1

(d−2)d
= Θ

(
1
d

)
, in the sense that for any

ε > 0, there exists some finite graph G with αG(λ) < αTd
(λ) + ε.

Proof of Proposition 2. In what follows all asymptotic notation refers to the limit

d → ∞. We first show that αTd
(λ) = (1 + o(1))W (λd)

d . We then show that for
λ = o(1), our bound on αG(λ) for triangle-free graphs given by Theorem 3 is

asymptotically (1 + o(1))W (λd)
d . We then appeal to monotonicity (Proposition 1)

to extend this lower bound to all λ = O(1). Letting z =
αTd

(λ)

1−2αTd
(λ)d, equation (16)

defining αTd
(λ) becomes

(17) z
(
1 +

z

d

)d−1

= λd.

First note that from (17) it follows easily that z = O(log d) and so
(
1 + z

d

)d−1
=

(1 + o(1))ez. It then follows that z = W (λd + o(λd)). Using the fact that dW
dx =

W (x)
x(1+W (x)) ≤ W (x)

x along with the Mean Value Theorem, we deduce that

(18) z = (1 + o(1))W (λd).

By the definition of z we then have

(19) αTd
(λ) =

z

d

(
1 + 2

z

d

)−1

=
z

d
+O

(
z2

d2

)
= (1 + o(1))

W (dλ)

d
.

Let us now suppose that λ = o(1). By Theorem 3 we then have
(20)
1

n
αG(λ) ≥

λ

1 + λ

W (d log(1 + λ))

d log(1 + λ)
= (1+o(1))

W (dλ+O(dλ2))

d
= (1+o(1))

W (dλ)

d
,

where for the last equality we use the same argument via the derivative of W as
above. In particular if λ = 1/ log d, say, we have that

1

n
αG(λ) ≥ (1 + o(1))

log d

d
,

and by Proposition 1, the same holds when λ = Θ(1). Now when λ = Θ(1),

αTd
(λ) = (1 + o(1)) log d

d by (19) and so the result follows. �

In the context of the proof technique of section 2, we can understand the deriva-
tion of (16) by imposing two local constraints on the hard-core model: that every
vertex has the same probability of being occupied and that conditioned on a vertex
v not being occupied, the events that each of its neighbors are uncovered are inde-
pendent events. Contrast this with our lower bound, which essentially says that the
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worst case for the occupancy fraction is if the number of these events that hold is
always a constant; that is, the corresponding events are as negatively correlated as
possible. Now if d is large, then the sum of d-independent indicator random vari-
ables is highly concentrated, so it is plausible that the most negatively correlated
case is not far from the independent case. Proposition 2 makes this precise.

Returning to the world of finite graphs, we note that in fact αTd
(λ) is approx-

imately achieved by finite graphs for a very large range of λ, and so Theorem 3
is asymptotically tight. Bhatnagar, Sly, and Tetali [5] give a precise description
of the local distribution of the hard-core model on a random d-regular graph Gd,n

for λ below a specified value λupper = d1+o(1) (just below the condensation thresh-
old of the model). They show that the local distribution converges to that of
the unique translation invariant hard-core measure on the infinite d-regular tree
described above, and so in particular for λ < λupper,

1

n
αGd,n

(λ) = αTd
(λ) + on(1),

with probability 1 − o(1) as n → ∞ (note that this is a much stronger notion
of approximation than that of Proposition 2, with the error term tending to 0
with n instead of d). Then provided we CONDITION on Gd,n being triangle free,
which occurs with positive probability (depending only on d), a random d-regular
graph indeed exhibits the tightness of Theorem 3. Let us quickly remark that when
λ = od(1) one can get better asymptotic agreement than that given in Proposition 2.
For example, when λ = d−s for some fixed 0 < s < 1, one can show that both the

lower bound in Theorem 3 and αTd
(λ) can be written as W (λd)

d +Od

(
log d
d1+s

)
and so

Theorem 3 is tight in a rather strong sense in this range.
An easy consequence of the results of [5] (either by their sections 3.2 and 3.3 or

by integrating the occupancy fraction) is that Theorem 4 is tight asymptotically in
d in the exponent. In particular, whp,

(21) PGd,n
(1) = e(

1
2+od(1)) log2 d

d n,

showing that the constant in the exponent of Theorem 2 is tight.
Finally let us note that for any fixed positive integer k, Gd,n in fact has girth

at least k with positive probability (depending only on d). It follows that even if
a stronger lower bound on girth is assumed in Theorems 1 to 4, the results cannot
be improved asymptotically.

5. On the ratio of the maximum

and average independent set size

In light of the above result showing that the average size of an independent set
in a triangle-free graph with maximum degree d is at least (1+od(1))

log d
d n, we now

raise the question of whether the largest independent set should be significantly
larger. This gives a new way to pursue an upper bound on R(3, k). There is always
a gap between the maximum and average size of an independent set (since the
empty set is an independent set), but in general the ratio of maximum to average
size can be arbitrarily close to 1. For example, the complete graphKn has maximum
independent set size 1 with average size n/(n+ 1).

We conjecture that such a narrow gap cannot occur in triangle-free graphs. The
following three conjectures make this claim precise in different ways.
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Conjecture 1. For every triangle-free graph G,

α(G)

αG(1)
≥ 4/3.

Replacing 4/3 with any number strictly greater than 1 would give an improve-
ment to the R(3, k) bound. The graph with the smallest ratio α/α(1) we have found
is the triangle-free cyclic graph that exhibits the bound R(3, 9) ≥ 36 [14]. For this
graph α/α(1) = 197136

137585 = 1.43283 . . . . We choose 4/3 since it is a nice fraction
less than 1.43 and since it is the ratio of maximum to average size in a triangle.
One might wonder if the extremal R(3, k) graphs are good candidates for pushing
the ratio α/α(1) down to 1. However, for large k it may be the case that graphs
arising from the triangle-free process are asymptotically extremal, as is conjectured
in [12]. We believe that for such graphs the ratio α/α(1) in fact converges to 2.
This motivates the following conjectures.

Conjecture 2. For every triangle-free graph G of minimum degree d,

α(G)

αG(1)
≥ 2− od(1).

Conjecture 3. For every ε > 0, there exists λ > 0 so that for all triangle-free
graphs G,

α(G)

αG(λ)
≥ 2− ε.

Lemma 1. The following improvements to Shearer’s upper bound on R(3, k) would
follow from the above conjectures and Theorems 1 and 3.

(1) Conjecture 1 implies R(3, k) ≤ (3/4 + o(1))k2/ log k.
(2) Conjecture 2 implies R(3, k) ≤ (1/2 + o(1))k2/ log k.
(3) Conjecture 3 implies R(3, k) ≤ (1/2 + o(1))k2/ log k.

Proof. (1) and (3) are immediate as Theorem 3 implies that for any fixed λ > 0,

αG(λ) ≥ (1 + od(1))
log d
d n in any maximum degree d, triangle-free graph G on n

vertices.
To show (2) we take any triangle-free graph of maximum degree d, greedily

removing any vertices of degree at most d
2 log d and their neighbors. �

One possible approach to the above conjectures is via the following simple con-
sequence of the proof of Proposition 1. For any graph G,

(22) α(G) = lim
λ→∞

αG(λ) = αG(1) +

∫ ∞

1

Varλ(|I|)
λ

dλ.

In this paper we gave a lower bound for the expected size of an independent set
drawn from a triangle-free graph according to the hard-core model. The above
equation shows that one approach to the above conjectures would be to do the
same for the variance.

It is not clear that there is anything special about excluding triangles as opposed
to other graphs, and so we make the following more general conjecture.

Conjecture 4. For every Kr-free graph G,

α(G)

αG(1)
≥ 1 +

1

r
.



122 E. DAVIES, M. JENSSEN, W. PERKINS, AND B. ROBERTS

For every Kr-free graph G of minimum degree d,

α(G)

αG(1)
≥ 2− od(1),

with r fixed as d → ∞.

To conclude, we give a lower bound on α/α(λ) that is tight for disjoint unions of
r-cliques. The result also shows that α/α(1) is bounded away from 1 for all graphs
containing an independent set of linear size.

Theorem 6. For any graph G,

α(G)

αG(λ)
≥ 1 +

α(G)

λn
(23)

or, equivalently,

P (λ) ≥
(
λ

α
+

1

n

)
P ′(λ).(24)

This is tight when G is a union of r-cliques, for any r.

Proof. Let P (λ) be the partition function of G. Define

Q(λ) = P (λ)− λ

α
P ′(λ)− 1

n
P ′(λ).

Then

Q(λ)

P (λ)
= 1− λ

α

P ′(λ)

P (λ)
− 1

n

P ′(λ)

P (λ)
= 1− α(λ)

α
− α(λ)

λn
,

and so after rearranging, it suffices to show that Q(λ) ≥ 0 for all λ. In fact, we will
show that all coefficients of Q(λ) as a polynomial in λ are non-negative. Let Q[k]
denote the coefficient of λk in Q(λ), and let ik = P [k] be the number of independent
sets of size k in G. Then

Q[k − 1] = ik−1 −
k − 1

α
ik−1 −

k

n
ik.

So it is enough to show for k = 1, . . . , α that

(25) k
ik

ik−1
≤ n− n(k − 1)

α
.

The following inequality is due to Moon and Moser [20] (though it is usually
stated for cliques instead of independent sets):

(26)
1

k2 − 1

(
k2

ik(G)

ik−1(G)
− n

)
≤ ik+1(G)

ik(G)
.

We proceed by induction on k, from k = α down to k = 1. If k = α, then (26) gives

ik(G)

ik−1(G)
≤ n

k2
,

which is exactly (25) with α = k.

Now inductively assume ik+1

ik
≤ n(1− k

α )
1

k+1 , and plug this into the RHS of (26).
Rearranging, this gives

(27)
ik

ik−1
≤ n

(
1

k
− 1

α
+

1

kα

)
,

which is (25). �
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The integrated form of (24) is a simple bound on the partition function in terms
of the independence number and number of vertices: for any graph G on n vertices
with independence number α,

PG(λ) ≤
(
1 +

λn

α

)α

.

This bound is tight for unions of cliques of the same size and is implicit in the
work of Moon and Moser. It appears explicitly in [13], generalizing the λ = 1 case
from [2].
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