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GLOBAL-IN-TIME SMOOTHING EFFECTS FOR SCHRÖDINGER

EQUATIONS WITH INVERSE-SQUARE POTENTIALS

HARUYA MIZUTANI

(Communicated by Joachim Krieger)

Abstract. The purpose of this note is to prove global-in-time smoothing
effects for the Schrödinger equation with potentials exhibiting critical singu-
larity. A typical example of admissible potentials is the inverse-square po-
tential a|x|−2 with a > −(n − 2)2/4. This particularly gives an affirmative
answer to a question raised by T. A. Bui et al. (J. Differential Equations 262
(2017), 2771–2807). The proof employs a uniform resolvent estimate proved
by Barceló, Vega, and Zubeldia (Adv. Math. 240 (2013), 636–671) an abstract
perturbation method by Bouclet and Mizutani (preprint).

1. Introduction

This note is concerned with smoothing properties of the time-dependent Schrö-
dinger equation

i∂tu(t, x) = Hu(t, x) + F (t, x); u(0, x) = ψ(x),(1.1)

with given data ψ ∈ L2(Rn) and F ∈ L1
loc(R;L

2(Rn)), where H = −Δ + V (x) is
a Schrödinger operator on Rn, n ≥ 3, with a real-valued function V which decays
at spatial infinity in a suitable sense and has a critical singularity at the origin.
A typical example of potentials we have in mind is the inverse-square potential
V (x) = a|x|−2 satisfying a > −(n− 2)2/4.

Let us first recall several known results for the free case, describing the motivation
of this paper. It is well-known that the solution u = eitΔψ to the free Schrödinger
equation

i∂tu(t, x) = −Δu(t, x); u|t=0 = ψ ∈ L2(Rn),

satisfies the global-in-time smoothing effect

||〈x〉−ρ|D|1/2eitΔψ||L2(R1+n) ≤ C||ψ||L2(Rn),(1.2)

where 〈x〉 = (1 + |x|2)1/2, ρ > 1/2 and |D| = (−Δ)1/2 (see Ben-Artzi and Klain-
erman [2] for n ≥ 3 and Chihara [8] for n = 2). When n ≥ 3, the estimate of the
form

||w(x)eitΔψ||L2(R1+n) ≤ C||w||Ln(Rn)||ψ||L2(Rn)(1.3)
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was proved by Kato and Yajima [18]. The estimate (1.3) also follows from Hölder’s
inequality and the endpoint Strichartz estimate proved by Keel and Tao [19]:

||eitΔψ||
L2(R;L

2n
n−2 (Rn))

≤ C||ψ||L2(Rn),(1.4)

which can also be regarded as a smoothing property in Lp-spaces. All of these three
estimates are fundamental tools in the study of the Cauchy problem and scattering
theory for both linear and nonlinear Schrödinger equations (see [7,17,18,27,28] and
references therein). It is also worth noting that (1.2) and (1.3) are closely connected
with uniform estimates for the resolvent (−Δ− z)−1 with respect to z ∈ C \ [0,∞)
(see the next section for more details).

There is a vast literature on extending estimates (1.2)–(1.4) to the Schrödinger
operator H = −Δ + V with potential V (x). For the case when V has enough
regularity and decays sufficiently fast at spatial infinity, we refer to [12,13,22,24,26]
and references therein. There are also several results in the case when V has
critical singularity. In particular, the Schrödinger operator with the inverse-square
potential of the form

Ha = −Δ+ a|x|−2, a > − (n− 2)2

4
,

has attracted increasing attention since it represents a borderline case for the va-
lidity of (1.2)–(1.4) ([11,14]), where we note that (n− 2)2/4 is the best constant in
Hardy’s inequality

(n− 2)2

4

∫
|x|−2|u|2dx ≤

∫
|∇u|2dx, u ∈ C∞

0 (Rn).(1.5)

We refer to [1, 3, 5, 6] for Kato–Yajima type estimates (1.3) and to [3, 5, 6, 23] for
Strichartz estimates (1.4). Concerning the estimate (1.2), in a recent paper [4], the
authors showed, among others, the following theorem.

Theorem 1.1 ([4, Theorem 1.2]). Let n ≥ 3, a ≥ −(n − 2)2/4 + 1/4 and ε > 0.
Then there exists Cε > 0 such that for all ψ ∈ L2(Rn), e−itHaψ satisfies

||w(|x|)|D|1/2e−itHaψ||L2(R1+n) ≤ Cε||ψ||L2(Rn)(1.6)

where w(r) = r(ε−1)/2(1 + rε)−1.

The condition a ≥ −(n − 2)2/4 + 1/4 was used to ensure that w satisfies some
conditions for two-sided weighted norm estimates

C1||w(x)(−Δ)s/2f ||L2 ≤ ||w(x)Hs/2
a f ||L2 ≤ C2||w(x)(−Δ)s/2f ||L2

established by the same paper (see [4, Theorem 1.1]). Then the authors raised
a question whether (1.6) holds under the condition a > −(n − 2)2/4. The main
purpose of the present note is to give an affirmative answer to this question. More
precisely, we prove global-in-time smoothing effects of the form (1.6) for Schrödinger
operators H = −Δ + V (x) with a large class of real-valued potentials which par-
ticularly includes the inverse-square potential with a > −(n− 2)2/4. Furthermore,
global-in-time smoothing effects for the solution to (1.1) with the inhomogeneous
term F are also studied for the same class of potentials. The proofs are based on
an abstract perturbation method from our previous work [3] and a uniform esti-
mate proved by [1] for the weighted resolvent |x|−1(H − z)−1|x|−1 with respect to
z ∈ C \ [0,∞).
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In order to state the main results, we introduce some notation. From now on we
let n ≥ 3 and impose the following condition:

Assumption A. Let V (x) be a real-valued function on Rn such that |x|V ∈
Ln,∞(Rn) and x · ∇V ∈ Ln/2,∞(Rn). Moreover, there exists δ > 0 such that
−Δ+ V ≥ −δΔ and −Δ − V − x · ∇V ≥ −δΔ in the sense of forms; that is, for
all u ∈ C∞

0 (Rn),

〈(−Δ+ V )u, u〉 ≥ δ||∇u||L2 , 〈(−Δ− V − x · (∇V ))u, u〉 ≥ δ||∇u||L2 .(1.7)

Here 〈f, g〉 =
∫
fgdx is the inner product in L2(Rn) and Lp,q is the Lorentz

space (see the end of this section). A typical example satisfying Assumption A is the
inverse-square potential V (x) = a|x|−2 with a > −(n−2)2/4. In this case, it follows
from Hardy’s inequality (1.5) that (1.7) is satisfied with δ = 1− 4|a|/(n− 2)2 > 0
if a < 0 or δ = 1 if a ≥ 0. Moreover, Assumption A is general enough to include
some potentials such that |x|2V /∈ L∞. For instance, we let c1, c2 > 0, α ∈ Rn and
χ ∈ C1(R) such that 0 ≤ χ ≤ 1 and |χ(k)(t)| ≤ |t|−k−1 for |t| ≥ 1. Then

V (x) =
−(n− 2)2/4 + c1

|x|2 − c2χ(|x− α|)
|x− α|

satisfies Assumption A with δ = c1 − c2(2 + sup |χ′|)(|α|+ 1) if

0 < c2 <
c1

(2 + sup |χ′|)(|α|+ 1)
.

Under Assumption A, Hardy’s inequality (1.5) implies that the sesquilinear form

QH(u, v) = 〈(−Δ+ V )u, v〉, u, v ∈ C∞
0 (Rn),

is symmetric, non-negative and closable such that the domain of its closure QH

satisfies D(QH) = H1(Rn). Let H be the Friedrichs extension of QH , e−itH the
unitary group on L2(Rn) generated by H via Stone’s theorem and ΓH the inhomo-
geneous propagator defined by

ΓHF (t) =

∫ t

0

e−i(t−s)HF (s)ds, F ∈ L1
loc(R;L

2(Rn)).(1.8)

Then a unique (mild) solution to the Schrödinger equation (1.1) is given by

u(t) = e−itHψ − iΓHF (t).(1.9)

We say that v(x) belongs to the Muckenhoupt A2 class if v, 1/v ∈ L1
loc(R

n), v ≥ 0
and ( 1

|B|

∫
B

v(x)dx
)( 1

|B|

∫
B

1

v(x)
dx

)
≤ C

for all balls B ⊂ Rn with some constant C > 0 independent of B.
The main result in this paper then is as follows.

Theorem 1.2. Let n ≥ 3, V satisfy Assumption A and w ∈ L2(R). Suppose
w(|x|)2 ∈ A2 and, for any j = 1, 2, . . . , n, there exists Cj > 0 such that

w(|x|) ≤ Cjw(xj), x = (x1, . . . , xn) ∈ R
n.

Then there exists C > 0, independent of w, such that e−itH satisfies

||w(|x|)|D|1/2e−itHψ||L2(R1+n) ≤ C||w||L2(R)||ψ||L2(Rn), ψ ∈ L2(Rn).
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Assuming 0 < ε < 1 without loss of generality, it is easy to see that w(r) =
r(ε−1)/2(1 + rε)−1 fulfills the above conditions. Another typical example of w is
〈x〉−ρ, in which case we have

Theorem 1.3. Let n ≥ 3, ρ > 1/2 and A,B ∈ {Ḣ−1/2,ρ(Rn), L
2n

n+2 ,2(Rn)}.
Suppose V satisfies Assumption A. Then the solution u to (1.1) given by (1.9)
satisfies

||u||L2(R;B∗) ≤ C||ψ||L2(Rn) + C||F ||L2(R;A)(1.10)

for all ψ ∈ L2(Rn) and F ∈ L1
loc(R;L

2(Rn)) ∩ L2(R;A).

Here Ḣs,μ(Rn) denotes the weighted homogeneous Sobolev space equipped with

the norm ||f ||Ḣs,μ = ||〈x〉μ|D|sf ||L2 . Note that (L
2n

n+2 ,2(Rn))∗ = L
2n

n−2 ,2(Rn) and

(Ḣ−1/2,ρ(Rn))∗ = Ḣ1/2,−ρ(Rn). If A = B = L
2n

n+2 ,2(Rn), (1.10) becomes the
endpoint Strichartz estimate and was proved by our previous work [3]. If A =

B = Ḣ−1/2,ρ(Rn), (1.10) is a generalization of (1.2) and seems to be new under
Assumption A. Here we stress that A and B do not have to coincide.

Notation. Throughout the paper we use the following notation. For T > 0 and a
Banach space X, we denote ||F ||Lp

TX = ||F ||Lp([−T,T ];X). Lp,q(Rn) denotes the

Lorentz space equipped with the norm || · ||Lp,q(Rn) satisfying

||f ||Lp,q(Rn) ∼ ||tdf (t)1/p||Lq(R+,t−1dt),

where df (t) := μ({x ∈ Rn | |f(x)| > t}) is the distribution function of f . We use
the convention L∞,∞ = L∞. For 1 ≤ p, p1, p2 < ∞ and 1 ≤ q, q1, q2 ≤ ∞ satisfying
1/p = 1/p1 + 1/p2, 1/q = 1/q1 + 1/q2, we have Hölder’s inequality for Lorentz
spaces:

(1.11) ||fg||Lp,q ≤ C||f ||Lp1,q1 ||g||Lp2,q2 , ||fg||Lp,q ≤ C||f ||L∞ ||g||Lp,q .

When n ≥ 3, we also have Sobolev’s inequality in Lorentz spaces:

||f ||
L

2n
n−2

,2 ≤ C||∇f ||L2 , f ∈ H1.(1.12)

We refer to [15] for more details on Lorentz spaces. In what follows we often omit
Rn from Lp(Rn) and so on, if there is no confusion.

The rest of the paper is organized as follows. We first recall in the next section
the abstract perturbation method developed in [3], which plays an important role
in the proof of the main theorems. The proof of Theorems 1.2 and 1.3 is given in
section 3.

2. An abstract perturbation method

Here we recall the abstract method developed in [3]. We begin by recalling the
notion of the (super)smoothness in the sense of Kato [17] and Kato-Yajima [18].
Let H be a Hilbert space with inner product 〈·, ·〉 and norm || · ||, H a self-adjoint
operator on H and A a densely defined closed operator on H. Note that A∗ is also a
densely defined closed operator (see [25, Theorem VIII.1]). Let RH(z) := (H−z)−1,
z /∈ σ(H). Then we say that A is H-smooth with bound a if

sup
z∈C\R

|〈(RH(z)−RH(z))A∗ψ,A∗ψ〉| ≤ a2

2
||ψ||2, ψ ∈ D(A∗).
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We say that A is H-supersmooth with bound a if

sup
z∈C\R

|〈RH(z)A∗ψ,A∗ψ〉| ≤ a

2
||ψ||2, ψ ∈ D(A∗).

Note that if A is H-supersmooth with bound a, then A is H-smooth with bound
(2a)1/2. The H-(super)smoothness is closely connected with smoothing effects.

Proposition 2.1. (1) A is H-smooth with bound a if and only if, for any ψ ∈ H,
e−itHψ belongs to D(A) for a.e. t ∈ R and

||Ae−itHψ||L2(R;H) ≤ a||ψ||.(2.1)

(2) Suppose A is H-supersmooth with bound a. Then, for any simple function
F : R → D(A∗) and t ∈ R, Ae−i(t−s)HA∗F (s) is Bochner integrable in s over [0, t]
(or [t, 0]) and satisfies∣∣∣∣∣∣e−|εt|

∫ t

0

Ae−i(t−s)HA∗F (s)ds
∣∣∣∣∣∣
L2(R;H)

≤ a||e−|εt|F ||L2(R;H)(2.2)

for all ε ∈ R. Conversely, if the estimate (2.2) holds for all simple functions
F : R → D(A∗) and |ε| < ε0 with some ε0 > 0, then A is H-supersmooth with
bound a.

Proof. The first statement is due to [17, Lemma 3.6 and Theorem 5.1] (see also
[25, Theorem XIII.25]). The second assertion was proved by [10, Theorem 2.3]. �

Note that if A is H-smooth, then A is infinitesimally H-bounded ([25, Theorem
XIII.22]). Also note that the estimate (2.2) can be replaced by∣∣∣∣∣∣e−|εt|

∫ t

0

Ae−i(t−s)HA∗F (s)ds
∣∣∣∣∣∣
L2

TH

≤ a||e−|εt|F ||L2
TH.(2.3)

Indeed, (2.2) implies (2.3) since s ∈ [−T, T ] if t ∈ [−T, T ] and s ∈ [0, t] (or s ∈
[−t, 0]). Conversely, since (2.3) implies that∣∣∣∣∣∣e−|εt|

∫ t

0

Ae−i(t−s)HA∗F (s)ds
∣∣∣∣∣∣
L2

TH

≤ a||e−|εt|F ||L2(R;H)

and a is independent of T , one has (2.2) by letting T → ∞. Let ΓH be the
inhomogeneous propagator defined by the formula (1.8) and set

Γ∗
HF (t) = �[0,∞)(t)

∫ T

t

e−i(t−s)HF (s)ds− �(−∞,0](t)

∫ t

−T

e−i(t−s)HF (s)ds.(2.4)

By a direct calculation, 〈〈ΓHF,G〉〉T = 〈〈F,Γ∗
HG〉〉T for F,G ∈ L1

locH, where

〈〈F,G〉〉T :=

∫ T

−T

〈F (t), G(t)〉dt.

Hence Γ∗
H is the adjoint of ΓH in L2

TH. In the abstract theorem below, the oper-
ators AΓH and AΓ∗

H for some H-smooth operator A play important roles. These
operators are a priori well-defined on L1

loc(R;D(H)) since, for some z /∈ σ(H) and
each T > 0,

||AΓHF ||L2
TH + ||AΓ∗

HF ||L2
TH ≤ CT ||AR0(z)||B(H)||R0(z)F ||L1

TH < ∞.

The next lemma provides a rigorous definition of AΓHF (t) for F ∈ L1
loc(R;H).
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Lemma 2.2 ([3, Lemma 4.3 and Lemma 4.5]). Suppose that A is H-smooth with
bound a. Then AΓH and AΓ∗

H extend to bounded operators from L1
TH to L2

TH such
that

||AΓHF ||L2
TH ≤ Ca||F ||L1

TH, ||AΓ∗
HF ||L2

TH ≤ Ca||F ||L1
TH(2.5)

for any T > 0 and F ∈ L1
TH with some C > 0 independent of a, T and F .

Moreover, we have

AΓHF (t) =

∫ t

0

Ae−i(t−s)HF (s)ds(2.6)

for all simple functions F : [−T, T ] → H and a.e. t ∈ [−T, T ]. In particular

AΓHF (t) and
∫ t

0
Ae−i(t−s)HF (s)ds coincide in L2

TH.

Proof. For the sake of self-containedness, we give the proof for ΓH in detail. The
proof for Γ∗

H is analogous. Let χ ∈ C∞
0 (R) be such that χ ≡ 1 near 0 and 0 ≤ χ ≤ 1

and set χε(t) = χ(εt). Note that AΓHχε(H) = Aχε(H)ΓH is well-defined on L1
TH

since A is H-bounded. Moreover, the H-smoothness of A shows that∣∣∣∣∣∣Ae−itH

∫
[0,T ]

eisHχε(H)F (s)ds
∣∣∣∣∣∣
L2

TH

≤ a||F ||L1
TH.

Using the Christ-Kiselev lemma [9], one can replace [0, T ] by [0, t] in the left hand
side to obtain

||Aχε(H)ΓHF ||L2
TH ≤ Ca||F ||L1

TH

with some universal constant C > 0 independent of F . This estimate implies that,
for all F ∈ L1

TH, Aχε(H)ΓHF converges in L2
TH as ε → 0 and the limit denoted

by the same symbol AΓHF satisfies the first estimate in (2.5). This proves the first
half of this lemma.

Next, let F : [−T, T ] → H be a simple function. As we have shown, Aχεn(H)ΓH

converges to AΓHF in L2
TH as n → ∞ for any sequence εn > 0 with εn →

0. Then one can find a subsequence εnk
and a null set N ⊂ [−T, T ] such that

Aχεnk
(H)ΓHF → AΓHF (t) in H as k → ∞ for all t ∈ [−T, T ] \N. Hence, in order

to show (2.6), it suffices to check that∣∣∣∣∣∣ ∫ t

0

Ae−i(t−s)HF (s)ds−Aχεnk
(H)ΓHF (t)

∣∣∣∣∣∣
H

→ 0

as k → ∞ for all t ∈ [−T, T ] \N. Let us write F =
∑N

j=1 �Ej
(t)fj with fj ∈ H and

measurable sets Ej ⊂ [−T, T ]. Then we have for all t ∈ [−T, T ] \N,∣∣∣∣∣∣ ∫ t

0

Ae−i(t−s)HF (s)ds−Aχεnk
(H)ΓHF (t)

∣∣∣∣∣∣
H

≤
N∑
j=1

∣∣∣∣∣∣ ∫
[0,t]∩Mj

AeisH(1− χεnk
(H))e−itHfjds

∣∣∣∣∣∣
H

≤
N∑
j=1

T 1/2
(∫

R

||AeisHe−itH(1− χεnk
(H))fj ||

2

H
ds
)1/2

≤ CT 1/2
N∑
j=1

||(1− χεnk
(H))fj ||H → 0
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as k → ∞, where we have used Hölder’s inequality in the third line and the H-
smoothness of A and the unitarity of e−itH in the last line. This completes the
proof. �

In what follows, AΓH and AΓ∗
H denote such extensions. By Proposition 2.1(1),

(2.3) and this lemma, if A is H-supersmooth with bound a, then AΓHA∗ is well-
defined on L1

loc(R; (D(A∗))) and satisfies ||AΓHA∗F ||L2
TH ≤ a||F ||L2

TH for all sim-

ple functions F : [−T, T ] → D(A∗).
Now we are ready to recall an abstract theorem from [3]. Let (H0, H) be a pair

of self-adjoint operators on H such that H = H0 + V ∗
1 V2 in the following sense:

• V1, V2 are densely defined closed operators on H such that we have contin-
uous embeddings D(H0) ⊂ D(V1), D(H) ⊂ D(V1) and D(H) ⊂ D(V2).

• 〈Hf, g〉 = 〈f,H0g〉+ 〈V2f, V1g〉 for f ∈ D(H) and g ∈ D(H0).

Note that, under the above conditions, V ∗
1 , V

∗
2 are also densely defined. Recall that

two Banach spaces (A,B) are said to be a Banach couple if both A and B are
algebraically and topologically embedded in a Hausdorff topological vector space
C.

Proposition 2.3 ([3, Theorem 4.7]). Let A,B be two Banach spaces such that
(A,H) and (B,H) are Banach couples. Suppose that V1 is H0-smooth and V2 is
both H0-smooth and H-smooth. Consider the following series of estimates:

|〈〈e−itH0ψ,G〉〉T | ≤ s1||ψ||H||G||L2
TB,(2.7)

|〈〈ΓH0
F,G〉〉T | ≤ s2||F ||L2

TA||G||L2
TB,(2.8)

||V1Γ
∗
H0

G||
L2

TH
≤ s3||G||L2

TB,(2.9)

||V1ΓH0
F ||L2

TH ≤ s4||F ||L2
TA,(2.10)

||V2ΓH0
F ||L2

TH ≤ s5||F ||L2
TA,(2.11)

||V2e
−itHψ||L2

TH ≤ s6||ψ||H,(2.12)

||V2ΓHV ∗
2 G̃||L2

TH ≤ s7||G̃||L2
TH.(2.13)

(1) Suppose there exist constants s1, s3, s6 > 0 such that (2.7), (2.9) and (2.12)
are satisfied for all ψ ∈ H and simple function G : [−T, T ] → H∩B. Then one has

|〈〈e−itHψ,G〉〉T | ≤ (s1 + s3s6)||ψ||H||G||L2
TB

for all ψ ∈ H and simple function G : [−T, T ] → H ∩B.
(2) Suppose that there exist constants s2, s3, s4, s5, s7 > 0 such that (2.8), (2.9),

(2.10), (2.11) and (2.13) hold for all simple functions F : [−T, T ] → H ∩ A, G :

[−T, T ] → H ∩B and G̃ : [−T, T ] → D(H). Then one has

|〈〈ΓHF,G〉〉T | ≤ (s2 + s3s5 + s3s4s7)||F ||L2
TA||G||L2

TB

for all simple functions F : [−T, T ] → H ∩A and G : [−T, T ] → H ∩B.

Proof. We give the proof in detail for the sake of self-containedness. Let us first
show the first statement. The Duhamel formula implies that

〈e−itHψ, ϕ〉 = 〈e−itH0ψ, ϕ〉 − i

∫ t

0

〈V2e
−irHψ, V1e

−i(r−t)H0ϕ〉dr, ψ, ϕ ∈ L2.

(2.14)
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Plugging in ϕ = G(t), integrating over t ∈ [−T, T ] and using Fubini’s theorem, we
learn from the formula (2.4) of the adjoint Γ∗

H0
that

〈〈e−itHψ,G〉〉T = 〈〈e−itH0ψ,G〉〉T − i〈〈V2e
−itHψ, V1Γ

∗
H0

G〉〉T .

Applying (2.7), (2.9) and (2.12), we then obtain the first assertion (1).
In order to prove the second assertion (2), we replace t by t − s and plug in

ψ = F (s), ϕ = G(t) and integrate over s ∈ [0, t] in (2.14) to obtain

〈ΓHF (t), G(t)〉

= 〈ΓH0
F (t), G(t)〉 − i

∫ t

0

∫ t

s

〈V2e
−i(τ−s)HF (s), V1e

−i(τ−t)H0G(t)〉dτds

= 〈ΓH0
F (t), G(t)〉 − i

∫ t

0

〈V2ΓHF (τ ), V1e
−i(τ−t)H0G(t)〉dτ.

As above, integrating in t ∈ [−T, T ] and using (2.4) implies that

〈〈ΓHF,G〉〉T = 〈〈ΓH0
F,G〉〉T − i〈〈V2ΓHF, V1Γ

∗
H0

G〉〉T .(2.15)

Exchanging the roles of H and H0, we also obtain

〈〈ΓHF,G〉〉T = 〈〈ΓH0
F,G〉〉T − i〈〈V1ΓH0

F, V2Γ
∗
HG〉〉T .(2.16)

Now applying (2.8), (2.9) to (2.15) implies that

|〈〈ΓHF,G〉〉T | ≤ s2||F ||L2
TA||G||L2

TB + s3||V2ΓHF ||L2
TH||G||L2

TB.(2.17)

It remains to deal with ||V2ΓHF ||L2
TH = sup|| ˜G||

L2
T

H
=1 |〈〈V2ΓHF, G̃〉〉T |. Since

D(H) is dense in H, we may assume G̃(t) ∈ D(H). Then, taking D(H) ⊂ D(V ∗
2 )

into account, we use (2.16) with G = V ∗
2 G̃, (2.10), (2.11) and (2.13) to obtain

|〈〈V2ΓHF, G̃〉〉T | ≤ (s5 + s4s7)||F ||L2
TA, which, together with (2.16), gives us the

second assertion. This completes the proof. �

3. Proof of Theorems 1.2 and 1.3

Let H = −Δ+ V (x) be as in Theorem 1.2. This section is devoted to the proof
of the main theorems. In what follows we use a standard notation 2∗ = 2n/(n− 2),
2∗ = 2n/(n+ 2). We write Γ0 = Γ−Δ. Let us first recall various estimates for the
free Schrödinger equation.

Lemma 3.1. There exists C > 0 such that, for any v ∈ Ln,∞(Rn) and T > 0,

||eitΔψ||L2
TL2∗,2 ≤ C||ψ||L2 ,(3.1)

||Γ0F ||L2
TL2∗,2 ≤ C||F ||L2

TL2∗,2 ,(3.2)

||v(x)Γ0F ||L2
TL2 ≤ C||v||Ln,∞ ||F ||L2

TL2∗,2 ,(3.3)

||v(x)Γ∗
0F ||L2

TL2 ≤ C||v||Ln,∞ ||F ||L2
TL2∗,2 .(3.4)

Proof. (3.1) and (3.2) are endpoint Strichartz estimates proved by [19, Theorem
10.1]. The latter two estimates follow from (3.2), Hölder’s inequality (1.11) and the
duality. �
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Lemma 3.2. Let w ∈ L2(R) be as in Theorem 1.2, ρ > 1/2 and v ∈ Ln,∞(Rn).
Then there exists C > 0, independent of w, v, and T > 0, such that, for all ψ ∈ L2

and simple function F : R → S(Rn), one has

||w(|x|)|D|1/2eitΔψ||L2
TL2 ≤ C||w||L2(R)||ψ||L2 ,(3.5)

||w(|x|)|D|1/2Γ0F ||L2
TL2 ≤ C||w||L2(R)||F ||L2

TL2∗,2 ,(3.6)

||v(x)Γ∗
0F ||L2

TL2 ≤ C||v||Ln,∞ ||w||L2(R)||w(|x|)−1|D|−1/2F ||L2
TL2 ,(3.7)

||〈x〉−ρ|D|1/2Γ0F ||L2
TL2 ≤ C||〈x〉ρ|D|−1/2F ||L2

TL2 ,(3.8)

||〈x〉−ρ|D|1/2Γ0F ||L2
TL2 ≤ C||F ||L2

TL2∗,2 ,(3.9)

||v(x)Γ∗
0F ||L2

TL2 ≤ C||v||Ln,∞ ||〈x〉ρ|D|−1/2F ||L2
TL2 ,(3.10)

||v(x)Γ0F ||L2
TL2 ≤ C||v||Ln,∞ ||〈x〉ρ|D|−1/2F ||L2

TL2 .(3.11)

Proof. Let us first consider (3.5). When n = 1, it was proved by [20] that

sup
x∈R

|||Dx|1/2eit∂
2
xf ||L2(Rt)

≤ C||f ||L2(Rx)
,

which, together with the unitarity of eitΔx̂j in L2(Rn−1), implies that

|||Dj |1/2eitΔψ||L∞
xj

L2
TL2

x̂j

≤ C||ψ||L2 , j = 1, 2, . . . , n,

uniformly in T > 0, where x̂j = (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1 and
Dj = −i∂xj

. (3.5) then is derived from this estimate as follows. Let {Cj(ξ)} be

a conical partition of unity on Rn so that I =
∑n

j=1 Cj(ξ), where Cj ∈
C∞(Rn \ {0}) such that suppCj ⊂ {2|ξj | > |ξ|} and ∂α

ξ Cj(ξ) = O(|ξ|−|α|). If

we set C̃j(ξ) = Cj(ξ)|ξ|1/2|ξj |−1/2, then C̃j also satisfies ∂α
ξ Cj(ξ) = O(|ξ|−|α|) and

|ξ|1/2 =
∑n

j=1 C̃j(ξ)|ξj|1/2. Since w(|x|)2 belongs to the Muckenhoupt A2-class,

C̃j(D) is bounded on a weighted space L2(Rn, w(|x|)2dx) by weighted Mikhlin’s
multiplier theorem (see [21]). Thus we conclude that

||w(|x|)|D|1/2eitΔψ||2L2
TL2 ≤

n∑
j=1

||w(|x|)C̃j(D)|Dj |1/2eitΔψ||
2

L2
TL2

≤ C

n∑
j=1

||w(|x|)|Dj |1/2eitΔψ||
2

L2
TL2

≤ C
n∑

j=1

||w||2L2(R)|||Dj |1/2eitΔψ||
2

L∞
xj

L2
TL2

x̂j

≤ C||w||2L2(R)||ψ||
2
L2

uniformly in T > 0, where we used the properties w(|x|) ≤ Cjw(xj) and w ∈ L2(R)
in the third line. Next, by the same argument as above, (3.6) follows from the
estimate

|||Dj |1/2Γ0F ||L∞
xj

L2
TL2

x̂j

≤ C||F ||L2
TL2∗,2 ,

which is a slight generalization of [16, Lemma 4], in which the same estimate with
L2∗,2 replaced by L2∗ was proved. Although the proof is essentially the same as
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that of [16, Lemma 4], we briefly recall its strategy for the reader’s convenience.
Without loss of generality, we may assume j = 1. Then it suffices to show that

sup
x1

|||Dj |1/2Γ̃0F ||L2
TL2

x̂1

≤ C||F ||L2
TL2∗,2 ,(3.12)

where Γ̃0 is defined by

Γ̃0F (t) :=

∫ t

−∞
ei(t−s)ΔF (s)ds.

Indeed, the corresponding estimate for Γ0 − Γ̃0 follows from (3.5) and the dual
estimate of (3.1). The only difference from the proof of [16, Lemma 4] is an in-
terpolation step. While they used the complex interpolation, we will use a real

interpolation technique as in [19, section 6]. Let I± = 1±(D1)|D1|1/2Γ̃0, where
1±(t) = 1 for ±t ≥ 0 and 1±(t) = 0 for ∓t ≥ 0. It suffices to show that I+ is
bounded from L2

TL
2∗,2 to L2

TL
2
x̂1

uniformly in x1 since the proof for I− is anal-

ogous. By the TT ∗ argument, I+ ∈ B(L2
TL

2∗,2, L2
TL

2
x̂1
) if I∗+I+ is bounded from

L2
TL

2∗,2 to L2
TL

2∗,2. Hence, if we define a bilinear form I by

I(F,G) :=

∫∫
〈I+F (s, ·), I+G(t, ·)〉dsdt,

then it suffices to show that

|I(F,G)| ≤ C||F ||L2
TL2∗,2 ||G||L2

TL2∗,2(3.13)

uniformly in x1 and T > 0. It was shown by [16] that I∗+I+ is bounded on L2(Rn)
and the kernel of I∗+I+, denoted by K+(t, s, x, y), satisfies the dispersive estimate:

|K+(t, s, x, y)| ≤ C|t− s|−n/2, t �= s.

We then decompose I(F,G) as

I(F,G) =
∑
k∈Z

Ik(F,G), Ik(F,G) :=

∫∫ t−2k

t−2k+1

〈I+F (s, ·), I+G(t, ·)〉dsdt.

By using the same argument as in [19, Lemma 4.1], we see that

|Ik(F,G)| ≤ C2−kβ(a,b)||F ||L2
TLa′ ||G||L2

TLb′ , β(a, b) =
n

2
− 1− n

2
(
1

a
− 1

b
)

uniformly in k ∈ Z, where (a, b) satisfies one of the following conditions:

(i)
1

a
=

1

b
= 0; (ii)

n− 1

2n
≤ 1

a
≤ 1

2
and

1

b
=

1

2
;

(iii)
n− 1

2n
≤ 1

b
≤ 1

2
and

1

a
=

1

2
.

In other words, a vector valued sequence (Ik)k∈Z is bounded from L2
TL

a′

x × L2
TL

b′

x

to �∞β(a,b), where �
p
s = Lp(Z, 2jsdj) is a weighted �p space with the counting measure

dj. Then (3.13) follows from the technique by [19, Section 6] based on a bilinear
real interpolation.

The estimate (3.7) follows from the dual estimate of (3.6) and Hölder’s inequality
(1.11). For (3.8), we refer to [8]. (3.9) and (3.10) follow from (3.6) and (3.7) since
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〈x〉−ρ satisfies the condition on w in Theorem 1.2. In order to derive (3.11), we
observe from the formula (2.4) that Γ0 can be brought to the form

Γ0F (t) = −Γ∗
0F (t)± Γ0

0F (t) + Γ∓
0 F (t)

for ±t ≥ 0, where

Γ0
0F (t) =

∫ T

−T

e−i(t−s)HF (s)ds, Γ±
0 F (t) =

∫ ±T

0

e−i(t−s)HF (s)ds.

Then the desired estimate for Γ∗
0 is nothing but (3.9); the desired estimates for Γ0

0

and Γ∓
0 follow from (3.1), the dual estimate of (3.5) with w = 〈x〉−ρ and Hölder’s

inequality (1.11). �

The following fact, proved by [1, Theorem 1.6 and (1.23)] (see also [3, Theorem
6.1 and Appendix B]), also plays an important role.

Proposition 3.3. Let n ≥ 3 and V satisfy Assumption A. Then |x|−1 is H-
supersmooth.

We are in a position to show the main theorems.

Proof of Theorem 1.2. Let us set V1 = |x|V and V2 = |x|−1. By Sobolev’s inequal-
ity (1.12),

||Vjf ||L2 ≤ C||Vj ||Ln,∞ ||f ||L2∗,2 ≤ C||Vj ||Ln,∞ ||∇f ||L2

and hence D(Vj) ⊃ H1 ⊃ D(Δ) ∪ D(H). Moreover, (3.1) and Proposition 2.1(1)
show that both V1 and V2 are Δ-smooth. On the other hand, Propositions 2.1 and
3.3 show that

||V2e
−itHψ||L2

TL2 ≤ C||ψ||L2(3.14)

uniformly in T > 0. Let B be the completion of C∞
0 with respect to the norm

||w(|x|)−1|D|−1/2f ||L2 . By virtue of (3.5), (3.7) and (3.14), one can use Proposition
2.3 with H0 = −Δ, H = −Δ+ V and this B to obtain

|〈〈e−itHψ,G〉〉T | ≤ C||w||L2(R)||ψ||L2 ||G||B
for all ψ ∈ L2 and simple function G : [−T, T ] → S uniformly in T > 0. Then the
desired estimate follows from density and duality arguments. �

Proof of Theorem 1.3. We use the same decomposition V = V1V2 as above. Since
V2 is H-supersmooth, we learn by Proposition 2.1 and a remark after Lemma 2.2
that

||V2ΓHV2G̃||L2
TL2 ≤ C||G̃||L2

TL2(3.15)

for all simple functions G̃ : R → D(V2) with the constant C independent of T and

G̃. By virtue of (3.1)–(3.4), (3.5) with w = 〈x〉−ρ, (3.8)–(3.11) with v ∈ {V1, V2},
(3.14) and (3.15), we can use Proposition 2.3 with A,B ∈ {Ḣ−1/2,ρ, L2∗,2} to obtain

|〈〈e−itHψ,G〉〉T | ≤ C||ψ||L2 ||G||L2
TB, |〈〈ΓHF,G〉〉T | ≤ C||F ||L2

TA||G||L2
TB

uniformly in T > 0, ψ ∈ L2 and simple functions F,G : R → S. Then the assertion
follows from density of simple functions F : R → S in L2

TA and L2
TB and the

formula (1.9). �
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