# A MULTIDIMENSIONAL ANALOGUE OF THE RADEMACHER-GAUSSIAN TAIL COMPARISON 

PIOTR NAYAR AND TOMASZ TKOCZ

(Communicated by Thomas Schlumprecht)


#### Abstract

We prove a dimension-free tail comparison between the Euclidean norms of sums of independent random vectors uniformly distributed in centred Euclidean spheres and properly rescaled standard Gaussian random vectors.


## Introduction

Tail comparison bounds, such as Hoeffding's inequality, have always played a crucial role in probability theory. When specified to concrete examples, very precise estimates for tail probabilities are usually known. For instance, if $\epsilon_{1}, \epsilon_{2}, \ldots$ are independent random variables each taking values $\pm 1$ with probability $\frac{1}{2}$ and $g_{1}, g_{2}, \ldots$ are independent standard Gaussian random variables, then for every $m \geq 1$, real numbers $a_{1}, \ldots, a_{m}$ and positive $t$,

$$
\begin{equation*}
\mathbb{P}\left(\left|a_{1} \epsilon_{1}+\ldots+a_{m} \epsilon_{m}\right|>t\right) \leq c \cdot \mathbb{P}\left(\left|a_{1} g_{1}+\ldots+a_{m} g_{m}\right|>t\right) \tag{P}
\end{equation*}
$$

for some absolute constant $c$. This inequality was first proved by Pinelis in [4] with $c \approx 4.46$. Talagrand in [6] treated the case of independent (but not necessarily identically distributed) bounded random variables by means of the Laplace transform establishing similar Gaussian tail bounds. Bobkov, Götze and Houdré obtained a bigger constant $c \approx 12.01$ in ( P ), but their inductive argument was much simpler (see [1). Only very recently the best constant (equal approximately to 3.18) has been found (see [2]).

Oleszkiewicz conjectured the following multidimensional generalisation of Pinelis' Rademacher-Gaussian tail comparison (P): fix $d \geq 1$, let $\xi_{1}, \xi_{2}, \ldots$ be independent random vectors uniformly distributed in the Euclidean unit sphere $S^{d-1} \subset \mathbb{R}^{d}$ and let $G_{1}, G_{2}, \ldots$ be independent standard Gaussian random vectors in $\mathbb{R}^{d}$ with mean zero and identity covariance matrix; there exists a universal constant $C$ such that for every $m \geq 1$, real numbers $a_{1}, \ldots, a_{m}$ and $t>0$ we have

$$
\begin{equation*}
\mathbb{P}\left(\left\|\sum_{i=1}^{m} a_{i} \xi_{i}\right\|>t\right) \leq C \cdot \mathbb{P}\left(\left\|\sum_{i=1}^{m} a_{i} \frac{G_{i}}{\sqrt{d}}\right\|>t\right) . \tag{KO}
\end{equation*}
$$

Here and throughout, $\|\cdot\|$ denotes the standard Euclidean norm in $\mathbb{R}^{d}$.

[^0]Note that the normalisation is chosen so that the vectors $\xi_{1}$ and $G_{1} / \sqrt{d}$ have the same covariance matrix; plainly, when $d=1,(\overline{\mathrm{KO}})$ reduces to $(\mathrm{P})$. For general $d$, it is possible to deduce (KO) with $C=O(\sqrt{d})$ from Theorem 2 in [3].

The goal of this note is to positively resolve Oleszkiewicz's conjecture. We shall show the following two theorems which are our main results. The latter will easily follow from the former.

Theorem 1. For each $d \geq 2$, let $C_{d}$ be the best constant in inequality (KO). Then, $C_{d} \leq e^{2}<7.39$ for $d \geq 2$ and $\lim \sup _{d \rightarrow \infty} C_{d} \leq 2$.

Theorem 2. Let $X_{1}, X_{2}, \ldots$ be independent rotationally invariant random vectors having values in the unit Euclidean ball in $\mathbb{R}^{d}$. Let $G_{1}, G_{2}, \ldots$ be independent standard Gaussian random vectors in $\mathbb{R}^{d}$ with mean zero and identity covariance matrix. Then for every $m \geq 1$, real numbers $a_{1}, \ldots, a_{m}$ and $t>0$ we have

$$
\begin{equation*}
\mathbb{P}\left(\left\|\sum_{i=1}^{m} a_{i} X_{i}\right\|>t\right) \leq e^{2} \cdot \mathbb{P}\left(\left\|\sum_{i=1}^{m} a_{i} \frac{G_{i}}{\sqrt{d}}\right\|>t\right), \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ stands for the standard Euclidean norm in $\mathbb{R}^{d}$.
Remark. This will no longer hold if we only assume the boundedness of the $X_{i}$. For example, consider independent $X_{i}$ taking only two values $( \pm 1,0, \ldots, 0)$ each with probability $\frac{1}{2}$. Then for, say $a_{1}=\ldots=a_{m}=1 / \sqrt{m}, t=2$, the right-hand side of (11) goes to zero when $d$ goes to infinity, whereas the left-hand side does not depend on $d$.

Shortly after the first version of this manuscript was posted online, Pinelis found a different proof of our result, with a better constant (see [5]).

Proofs. Our proof of Theorem 1 is inductive, inspired by the inductive approach to the one dimensional case from [1]. In the inductive step, using the spherical symmetry of our problem, we arrive at an inequality comparing the Gaussian volume between centred and shifted balls (Lemma 3 below). This inequality can be viewed as a multidimensional generalisation of the two point-inequality derived in the inductive step in [1]. Its proof leads us to somewhat subtle estimates for the Laplace transform of the first coordinate of $\xi_{1}$ (Lemma 2 below).

We shall need four lemmas. We start with a result which will be used to provide numerical values of our constants.

Lemma 1. Let $d \geq 2$ and $G$ be a standard Gaussian random vector in $\mathbb{R}^{d}$. Then

$$
\mathbb{P}(\|G\|>\sqrt{d+2}) \geq 1 / e^{2}
$$

Proof (by I. Pinelis). Set $p_{d}=\mathbb{P}(\|G\|>\sqrt{d+2})$. By inequality (2.6) in [4]

$$
\mathbb{P}(\|G\|>\sqrt{d+2}) \geq \mathbb{P}(g>(\sqrt{d+2}-\sqrt{d-1}) \sqrt{2})
$$

where $g$ is a standard Gaussian random variable (with mean zero and variance one). Since the right-hand side is increasing in $d$, we have for $d \geq 4$

$$
p_{d} \geq \mathbb{P}(g>\sqrt{12}-\sqrt{6})>1 / e^{2} .
$$

Moreover, we directly check that $p_{2}=1 / e^{2}<p_{3}$. Thus, $p_{d} \geq 1 / e^{2}$ for $d \geq 2$.

The next lemma gives tight estimates for the Laplace transform of the first coordinate of a random vector uniformly distributed in the unit sphere. We hope these estimates are of independent interest, in addition to playing a major role in our proof.

Lemma 2. For $d \geq-1$ and $b \geq 0$ let us denote

$$
J_{d}=J_{d}(b)=\int_{-1}^{1}\left(1-x^{2}\right)^{d / 2} e^{b x} \mathrm{~d} x
$$

Then for every $d \geq 2$ we have
(a) $b^{2} J_{d+1}=-d(d+1) J_{d-1}+(d+1)(d-1) J_{d-3}$,
(b) $\frac{J_{d-3}}{J_{d-1}} \geq \frac{d}{d-1}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right)$,
(c) $\frac{J_{d-1}}{J_{d+1}} \leq \frac{d+2}{d+1}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right)$,
(d) $J_{d+1} J_{d-3} \geq J_{d-1}^{2} \frac{d(d+1)}{(d-1)(d+2)}$.

Proof. (a) Integrating by parts twice we get $b^{2} J_{d+1}=\int_{-1}^{1}\left(\sqrt{1-x^{2}}{ }^{d+1}\right)^{\prime \prime} e^{b x} \mathrm{~d} x$, which, after computing the second derivative in the above expression, easily leads to the desired relation.

For the proof of $(b)$ and (c) let us first observe that due to (a) these two assertions hold true for $b=0$. We then show that for $b>0,(b)$ and (c) are equivalent. Indeed, part (a) yields

$$
\begin{equation*}
\frac{J_{d-3}}{J_{d-1}}=\frac{d}{d-1}+\frac{b^{2}}{(d+1)(d-1)} \frac{J_{d+1}}{J_{d-1}}, \quad d \geq 2 \tag{2}
\end{equation*}
$$

Thus, (b) is equivalent to

$$
\frac{b^{2}}{(d+1)(d-1)} \frac{J_{d+1}}{J_{d-1}} \geq \frac{d}{d-1}\left(-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right)=\frac{d}{d-1} \frac{\frac{b^{2}}{d(d+2)}}{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}}
$$

After cancelling common factors on both sides this becomes (c).
Let us fix $b>0$. We shall show (b) by backwards induction on $d$. We can use (2) for $d+2$, that is, the equality

$$
\frac{J_{d-1}}{J_{d+1}}=\frac{d+2}{d+1}+\frac{b^{2}}{(d+3)(d+1)} \frac{J_{d+3}}{J_{d+1}},
$$

to rewrite (c) in the form

$$
\frac{b^{2}}{(d+3)(d+1)} \frac{J_{d+3}}{J_{d+1}} \leq \frac{d+2}{d+1}\left(-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right)=\frac{d+2}{d+1} \frac{\frac{b^{2}}{d(d+2)}}{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}},
$$

which becomes

$$
\begin{equation*}
\frac{J_{d+1}}{J_{d+3}} \geq \frac{d}{d+3}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right) \tag{3}
\end{equation*}
$$

First notice that (b) and equivalently (3) hold for all $d \geq d_{0}(b)$ for some large enough $d_{0}(b)$ which depends only on $b$. To see this observe that the left-hand side
of (3) is strictly greater than 1 , whereas the right-hand side for large $d$ is of order $1-3 / d+o(1 / d)$. Now suppose (b) holds for $d+4$, that is,

$$
\frac{J_{d+1}}{J_{d+3}} \geq \frac{d+4}{d+3}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{(d+4)(d+6)}}\right)
$$

and we want to show (b) (induction step). By the above and the fact that (3) and (b) are equivalent, it is enough to show that

$$
\frac{d+4}{d+3}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{(d+4)(d+6)}}\right) \geq \frac{d}{d+3}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{d(d+2)}}\right)
$$

This follows from $\frac{d+4}{d+6} \geq \frac{d}{d+2}$ and the estimate

$$
\frac{d+4}{2}+\sqrt{\frac{(d+4)^{2}}{4}+b^{2} \frac{d+4}{d+6}} \geq \frac{d}{2}+\sqrt{\frac{d^{2}}{4}+b^{2} \frac{d}{d+2}} .
$$

Clearly (d) immediately follows from (b) and (c).
Remark. Part (d) improves on Hölder's inequality which gives $J_{d-1}^{2} \leq J_{d+1} J_{d-3}$.
The following lemma lies at the heart of our inductive argument. It compares the standard Gaussian measure of centred and shifted Euclidean balls.

Lemma 3. Let $d \geq 2$ and $G$ be a standard Gaussian random vector in $\mathbb{R}^{d}$. For every $a \geq 0, R \geq \sqrt{d+2}$ and a vector $x \in \mathbb{R}^{d}$ of length $a \sqrt{d}$ we have

$$
\mathbb{P}(\|G\| \leq R) \leq \mathbb{P}\left(\|G-x\| \leq R \sqrt{1+a^{2}}\right)
$$

Proof. Since for $a=0$ we have equality, it is enough to show that the right-hand side,

$$
h(a, R)=\mathbb{P}\left(\left\|G-a \sqrt{d} e_{1}\right\| \leq R \sqrt{1+a^{2}}\right)
$$

is nondecreasing with respect to $a$ (by rotational invariance, for concreteness we can choose $x=a e_{1}$, where $\left.e_{1}=(1,0, \ldots, 0)\right)$. Using Fubini's theorem we can write

$$
h(a, R)=\frac{\left|S^{d-2}\right|}{\sqrt{2 \pi}^{d-1}} \int_{0}^{R \sqrt{1+a^{2}}}\left\{r^{d-2} e^{-r^{2} / 2} \int_{a \sqrt{d}-\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}}^{a \sqrt{d}+\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}} \phi(t) \mathrm{d} t\right\} \mathrm{d} r
$$

where $\phi(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$. The derivative with respect to $a$ equals

$$
\begin{aligned}
\frac{\partial}{\partial a} h(a, R) & =\frac{\left|S^{d-2}\right|}{\sqrt{2 \pi}^{d-1}} \int_{0}^{R \sqrt{1+a^{2}}}\left\{r^{d-2} e^{-r^{2} / 2}\right. \\
\cdot & {\left[\phi\left(a \sqrt{d}-\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}\right)\left(\sqrt{d}+\frac{a R^{2}}{\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}}\right)\right.} \\
& \left.\left.-\phi\left(a \sqrt{d}+\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}\right)\left(\sqrt{d}-\frac{a R^{2}}{\sqrt{R^{2}\left(1+a^{2}\right)-r^{2}}}\right)\right]\right\} \mathrm{d} r .
\end{aligned}
$$

After changing the variables $r=R \sqrt{1+a^{2}} \sqrt{1-x^{2}}$ we see that this is nonnegative if and only if

$$
\begin{aligned}
\int_{0}^{1}\left(1-x^{2}\right)^{\frac{d-3}{2}}[ & e^{-x a \sqrt{d} R \sqrt{1+a^{2}}}\left(x \sqrt{d}+\frac{a R}{\sqrt{1+a^{2}}}\right) \\
& \left.-e^{x a \sqrt{d} R \sqrt{1+a^{2}}}\left(x \sqrt{d}-\frac{a R}{\sqrt{1+a^{2}}}\right)\right] \mathrm{d} x \geq 0
\end{aligned}
$$

This condition can be further simplified by integration by parts using $\left(\left(1-x^{2}\right)^{\frac{d-1}{2}}\right)^{\prime}$ $=-(d-1) x\left(1-x^{2}\right)^{\frac{d-3}{2}}$. We obtain an equivalent inequality

$$
\int_{0}^{1}\left(1-x^{2}\right)^{\frac{d-3}{2}}\left(d-1-d\left(1+a^{2}\right)\left(1-x^{2}\right)\right) \cosh \left(a R \sqrt{d} \sqrt{1+a^{2}} x\right) \mathrm{d} x \geq 0
$$

Let $b=a \sqrt{d} R \sqrt{1+a^{2}}$. Then

$$
1+a^{2}=\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{R^{2} d}}
$$

Observe that

$$
\int_{0}^{1}\left(1-x^{2}\right)^{\frac{d}{2}} \cosh (b x) \mathrm{d} x=\frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{d}{2}} e^{b x} \mathrm{~d} x=\frac{1}{2} J_{d}(b)
$$

Thus, the inequality we want to show becomes

$$
\frac{J_{d-3}(b)}{J_{d-1}(b)} \geq \frac{d}{d-1}\left(\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{b^{2}}{R^{2} d}}\right)
$$

For a fixed $b$, the right-hand side as a function of $R$ is clearly decreasing, so given our assumption $R \geq \sqrt{d+2}$ it is enough to consider $R=\sqrt{d+2}$, which follows from Lemma 2(b).

Remark. The statement for $d=1$ remains true and was proved in [1], where it played a key role in the inductive proof of Pinelis' inequality (P).

The last lemma will help us use the spherical symmetry of our problem.
Lemma 4. Let $X$ be a rotationally invariant random vector in $\mathbb{R}^{d}$. Let $x \in \mathbb{R}^{d}$ and $t>0$ be such that $t>\|x\|$. Then

$$
\mathbb{P}(\|X+x\|>t)=\mathbb{P}\left(\|X\|>-\theta\|x\|+\sqrt{t^{2}+\theta^{2}\|x\|^{2}-\|x\|^{2}}\right)
$$

where $\theta$ is the first coordinate of an independent of $X$ random vector uniformly distributed in the unit sphere $S^{d-1}$ in $\mathbb{R}^{d}$.

Proof. Let $\xi$ be an independent of $X$ random vector uniformly distributed in the unit sphere $S^{d-1}$ in $\mathbb{R}^{d}$. By rotational invariance $X$ has the same distribution as $R \xi$, where $R=\|X\|$. We have

$$
\mathbb{P}(\|X+x\|>t)=\mathbb{P}\left(R^{2}+2 R\langle\xi, x\rangle+\|x\|^{2}>t^{2}\right)
$$

and by the rotational invariance of $\xi,\langle\xi, x\rangle$ has the same distribution as $\theta\|x\|$ with $\theta$ being the first coordinate of $\xi$. The inequality $R^{2}+2 R \theta\|x\|+\|x\|^{2}>t^{2}$ is equivalent to $R>-\theta\|x\|+\sqrt{t^{2}+\theta^{2}\|x\|^{2}-\|x\|^{2}}$ or $R<-\theta\|x\|-\sqrt{t^{2}+\theta^{2}\|x\|^{2}-\|x\|^{2}}$, but the second case does not hold as the right-hand side is negative, for we assume that $t>\|x\|$.

Proof of Theorem 1. For $d \geq 2$ we define $M_{d}=1 / \mathbb{P}\left(\left\|G_{1}\right\|>\sqrt{d+2}\right)$. We fix $d \geq 2$ and show by induction on $m$ that inequality (KO) holds with $C=M_{d}$. Then $C_{d} \leq$ $M_{d}$, by Lemma $M_{d} \leq e^{2}$ and by the central limit theorem, $\limsup _{d \rightarrow \infty} M_{d}=2$.

For $m=1$ we have to check that for $0<t<\left|a_{1}\right|$ we have $1 \leq M_{d} \cdot \mathbb{P}\left(\left\|a_{1} \frac{G_{1}}{\sqrt{d}}\right\|>t\right)$. This follows because $\mathbb{P}\left(\left\|G_{1}\right\|>\sqrt{d}\right) \geq \mathbb{P}\left(\left\|G_{1}\right\|>\sqrt{d+2}\right)$.

Suppose the assertion is true for $m \geq 1$. We shall show it for $m+1$. We can assume that the $a_{i}$ are nonzero. By homogeneity we can also assume that $\sum_{i=2}^{m+1} a_{i}^{2}=d$. If $t \leq \sqrt{d+2} \sqrt{\frac{a_{1}^{2}+d}{d}}$ we trivially bound the right-hand side as follows:

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \frac{G_{i}}{\sqrt{d}}\right\|>t\right)=\mathbb{P}\left(\left\|\sqrt{\frac{a_{1}^{2}+d}{d}} G_{1}\right\|>t\right) \geq \mathbb{P}\left(\left\|G_{1}\right\|>\sqrt{d+2}\right)=1 / M_{d} .
$$

Now suppose $t>\sqrt{d+2} \sqrt{\frac{a_{1}^{2}+d}{d}}$. Notice that in particular $t>\left|a_{1}\right|$. Consider $v=\sum_{i=2}^{m+1} a_{i} \xi_{i}$. By independence and rotational invariance,

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \xi_{i}\right\|>t\right)=\mathbb{P}\left(\left\|a_{1} e_{1}+v\right\|>t\right)
$$

Lemman 4 applied to $X=v$ and $x=a_{1} e_{1}$ yields

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \xi_{i}\right\|>t\right)=\mathbb{E}_{\theta} \mathbb{P}_{v}\left(\|v\|>-\theta\left|a_{1}\right|+\sqrt{t^{2}+\theta^{2} a_{1}^{2}-a_{1}^{2}}\right) .
$$

As a consequence, by the independence of $\theta$ and $v$, and the inductive hypothesis,
$\mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \xi_{i}\right\|>t\right) \leq M_{d} \cdot \mathbb{E}_{\theta} \mathbb{P}_{\left(G_{i}\right)_{i=2}^{m+1}}\left(\left\|\sum_{i=2}^{m+1} a_{i} \frac{G_{i}}{\sqrt{d}}\right\|>-\theta\left|a_{1}\right|+\sqrt{t^{2}+\theta^{2} a_{1}^{2}-a_{1}^{2}}\right)$.
The vector $\sum_{i=2}^{m+1} a_{i} \frac{G_{i}}{\sqrt{d}}$ has the same distribution as $\frac{\sqrt{\sum_{i=2}^{m+1} a_{i}^{2}}}{\sqrt{d}} G_{1}=G_{1}$. Therefore, applying again Lemma 4 yields

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \xi_{i}\right\|>t\right) \leq M_{d} \cdot \mathbb{P}\left(\left\|G_{1}+a_{1} e_{1}\right\|>t\right)
$$

To finish the inductive step it suffices to show that

$$
\mathbb{P}\left(\left\|G_{1}+a_{1} e_{1}\right\|>t\right) \leq \mathbb{P}\left(\left\|\sum_{i=1}^{m+1} a_{i} \frac{G_{i}}{\sqrt{d}}\right\|>t\right)=\mathbb{P}\left(\left\|\sqrt{\frac{a_{1}^{2}+d}{d}} G_{1}\right\|>t\right) .
$$

This follows from Lemma 3 applied to $a=\frac{\left|a_{1}\right|}{\sqrt{d}}$ and $R=t \sqrt{\frac{d}{a_{1}^{2}+d}}>\sqrt{d+2}$, which completes the proof.

Proof of Theorem 2. Let $\xi_{1}, \xi_{2}, \ldots$ be independent random vectors uniformly distributed in the unit Euclidean sphere $S^{d-1} \subset \mathbb{R}^{d}$, independent of the sequence $X_{1}, X_{2}, \ldots$. Since $X_{i}$ is rotational invariant, it has the same distribution as $R_{i} \xi_{i}$, where $R_{i}=\left\|X_{i}\right\|$. Note that almost surely $0 \leq R_{i} \leq 1$. Moreover, by independence, we have

$$
\mathbb{P}\left(\left\|\sum_{i=1}^{m} a_{i} X_{i}\right\|>t\right)=\mathbb{E}_{\left(R_{i}\right)_{i=1}^{m}} \mathbb{P}_{\left(\xi_{i}\right)_{i=1}^{m}}\left(\left\|\sum_{i=1}^{m} a_{i} R_{i} \xi_{i}\right\|>t\right) .
$$

Therefore, applying (KO) (conditionally on the $R_{i}$ ) with $C=e^{2}$ finishes the proof.

## Acknowledgments

The authors would like to thank Krzysztof Oleszkiewicz for introducing them to the subject. They are really grateful to Rafał Latała for a discussion concerning Theorem 2 as well as to Iosif Pinelis for sharing his simple proof of Lemma 1 which led to a significant improvement of our numerical constants. They are also indebted to Assaf Naor for his feedback.

## References

[1] Sergey G. Bobkov, Friedrich Götze, and Christian Houdré, On Gaussian and Bernoulli covariance representations, Bernoulli 7 (2001), no. 3, 439-451, DOI 10.2307/3318495. MR 1836739
[2] Vidmantas Kastytis Bentkus and Dainius Dzindzalieta, A tight Gaussian bound for weighted sums of Rademacher random variables, Bernoulli 21 (2015), no. 2, 1231-1237, DOI 10.3150/14BEJ603. MR 3338662
[3] Michel Ledoux and Krzysztof Oleszkiewicz, On measure concentration of vector-valued maps, Bull. Pol. Acad. Sci. Math. 55 (2007), no. 3, 261-278, DOI 10.4064/ba55-3-7. MR2346103
[4] Iosif Pinelis, Extremal probabilistic problems and Hotelling's $T^{2}$ test under a symmetry condition, Ann. Statist. 22 (1994), no. 1, 357-368, DOI 10.1214/aos/1176325373. MR 1272088
[5] Iosif Pinelis, On a multidimensional spherically invariant extension of the RademacherGaussian comparison, Electron. Commun. Probab. 21 (2016), Paper No. 67, 5, DOI 10.1214/16-ECP23. MR 3564214
[6] Michel Talagrand, The missing factor in Hoeffding's inequalities (English, with English and French summaries), Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), no. 4, 689-702. MR 1355613

Wharton Statistics Department, University of Pennsylvania, 3730 Walnut Street, Philadelphia, Pennsylvania 19104

E-mail address: nayar@mimuw.edu.pl
Department of Mathematics, Fine Hall, Princeton University, Princeton, New JerSEY 08544

E-mail address: ttkocz@princeton.edu


[^0]:    Received by the editors July 26, 2016 and, in revised form, March 6, 2017.
    2010 Mathematics Subject Classification. Primary 60E15; Secondary 60G15, 60G50.
    Key words and phrases. Probability inequalities, tail comparison, bounds for tail probabilities, Gaussian random vectors, uniform distributions in Euclidean spheres.

    The authors were supported in part by the Simons Foundation. The first author was supported in part by NCN grant DEC-2012/05/B/ST1/00412.

