COMPLETELY DECOMPOSABLE DIRECT SUMMANDS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK

ADOLF MADER AND PHILL SCHULTZ
(Communicated by Lev Borisov)

Abstract

Let A be a finite rank torsion-free abelian group. Then there exist direct decompositions $A=B \oplus C$ where B is completely decomposable and C has no rank 1 direct summand. In such a decomposition B is unique up to isomorphism and C is unique up to near-isomorphism.

1. Introduction

All 'groups' in this article are torsion-free abelian groups of finite rank, and undefined notation comes from the standard texts [4] and [8].

Groups are best thought of as additive subgroups of finite dimensional \mathbb{Q}-vector spaces. The rank of a group A is the dimension of the vector space $\mathbb{Q} A$ that A generates. By reason of rank, such groups always have 'indecomposable decompositions', meaning direct decompositions with indecomposable summands. Indecomposable decompositions can be highly non-unique (see for example [4, Section 90]). A particularly striking result in this direction is due to A.L.S. Corner [2], 3].

Let $P=\left(r_{1}, \ldots, r_{t}\right)$ be a partition of n, i.e., $r_{i} \geq 1$ and $r_{1}+\cdots+r_{t}=n$. Then G realizes P if there is an indecomposable decomposition $G=G_{1} \oplus \cdots \oplus G_{t}$ such that for all $i, r_{i}=\operatorname{rank}\left(G_{i}\right)$.

Corner's Theorem. Given integers $n \geq k \geq 1$, there exists a group G of rank n such that G realizes every partition of n into k parts $n=r_{1}+\cdots+r_{k}$.

Corner's Theorem constitutes a positive partial answer to the general
Question. Characterize the families of partitions of n that can be realized by a group.

On the other hand, Corner comments that
\ldots it can be shown quite readily that an equation such as $1+1+2=$ $1+3 \ldots$ cannot be realized.
Related questions were studied by Lee Lady [6] for finite rank almost completely decomposable groups, that is, finite extensions of completely decomposable groups. For a comprehensive exposition see [8].

Near isomorphism is a weakening of an isomorphism also due to Lady [7]. There are several equivalent definitions (see for example [8, Chapter 9]), the most

[^0]useful one for us being that a group A is nearly isomorphic to B, denoted $A \cong{ }_{\mathrm{nr}} B$, if there exists a group K such that $A \oplus K \cong B \oplus K$.

An important result due to Arnold [1, 12.9], [8, Theorem 12.2.5] is that if $A \cong{ }_{\mathrm{nr}}$ A^{\prime} and $A=X \oplus Y$, then $A^{\prime}=X^{\prime} \oplus Y^{\prime}$ with $X \cong_{\mathrm{nr}} X^{\prime}$ and $Y \cong{ }_{\mathrm{nr}} Y^{\prime}$. Conversely, if $X \cong_{\mathrm{nr}} X^{\prime}$ and $Y \cong{ }_{\mathrm{nr}} Y^{\prime}$, then $X \oplus Y \cong_{\mathrm{nr}} X^{\prime} \oplus Y^{\prime}$.

By Arnold's Theorem, nearly isomorphic groups of rank n realize the same partitions of n.

A group G is clipped if it has no direct summands of rank 1, a property which is also preserved by near isomorphism. Lady's 'Main Decomposition Theorem' says that every almost completely decomposable group G has a decomposition $G=G_{c d} \oplus G_{c l}$ where $G_{c d}$ is completely decomposable, $G_{c l}$ is clipped, $G_{c d}$ is unique up to isomorphism, and $G_{c l}$ is unique up to near-isomorphism.

Our main result, Theorem 2.5, is the generalization of the Main Decomposition Theorem to arbitrary groups, which then settles Corner's remark above about nonrealizability.

2. Main decomposition

A rank-1 group is a group isomorphic to an additive subgroup of \mathbb{Q}, and a completely decomposable group is a direct sum of rank-1 groups. A type is the isomorphism class of a rank-1 group. It is easy to see that every rank-1 group is isomorphic to a rational group, by which we mean an additive subgroup of \mathbb{Q} that contains 1 . Types are commonly denoted by σ, τ, \ldots, and we use the same notation to mean a rational group of type σ, τ, \ldots. It will always be clear from the context whether τ is a rational group or a type. The advantage of this notation is that any completely decomposable group A of finite rank r can be expressed as $A=\sigma_{1} v_{1} \oplus \cdots \oplus \sigma_{r} v_{r}$ with $v_{i} \in A$. In this case $\left\{v_{1}, \ldots, v_{r}\right\}$ is called a decomposition basis of A.

A completely decomposable group is called τ-homogeneous if it is the direct sum of rank-1 groups of type τ, and homogeneous if it is τ-homogeneous for some type τ. It is known [4, 86.6] that pure subgroups of homogeneous completely decomposable groups are direct summands.

Definition 2.1. A group G is τ-clipped if G does not possess a rank-1 summand of type τ.

Lemma 2.2. Suppose that $G=D \oplus B=A \oplus C$ where D and A are completely decomposable τ-homogeneous and B and C are τ-clipped. Then $D \cong A$.

Proof. Let $\delta, \beta, \alpha, \gamma \in \operatorname{End}(G)$ be the projections belonging to the given decompositions and let $0 \neq x \in D$, so that $x=x \alpha+x \gamma$. Denote by $\langle x\rangle_{*}$ the pure subgroup of D generated by x, so $\langle x\rangle_{*}$ is a summand of D of type τ.

If $x \alpha=0$, then $\langle x\rangle_{*} \subseteq \operatorname{Ker} \alpha=C$, so $\langle x\rangle_{*}$ is a subgroup and hence a summand of C of type τ, contradicting the fact that C is τ-clipped.

Hence $\alpha: D \rightarrow A$ is a monomorphism and therefore $\operatorname{rank} D \leq \operatorname{rank} A$. By symmetry $\operatorname{rank} A \leq \operatorname{rank} D$ and $D \cong A$ as desired.

The direct sum of τ-clipped groups need not be τ-clipped as Example 2.3 shows.
Example 2.3. Let p, q be different primes and let σ, τ be rational groups that are incomparable as types and such that neither $\frac{1}{p}$ nor $\frac{1}{q}$ is contained in either σ or τ.

Recall that \mathbb{Z} is a type. Let

$$
X_{1}=\left(\sigma v_{1} \oplus \tau v_{2}\right)+\mathbb{Z} \frac{1}{p}\left(v_{1}+v_{2}\right) \quad \text { and } \quad X_{2}=\left(\sigma w_{1} \oplus \tau w_{2}\right)+\mathbb{Z} \frac{1}{q}\left(w_{1}+w_{2}\right) .
$$

It is easy to see that X_{1} and X_{2} are indecomposable and therefore clipped.
Let $X=X_{1} \oplus X_{2}$. There exist integers u_{1}, u_{2} such that $u_{1} p+u_{2} q=1$. Now $\frac{1}{p}\left(v_{1}+v_{2}\right)+\frac{1}{q}\left(w_{1}+w_{2}\right)=\frac{1}{p q}\left(\left(q v_{1}+p w_{1}\right)+\left(q v_{2}+p w_{2}\right)\right)$. Set $v_{1}^{\prime}=q v_{1}+p w_{1}$, $v_{2}^{\prime}=q v_{2}+p w_{2}, w_{1}^{\prime}=-u_{1} v_{1}+u_{2} w_{1}$, and $w_{2}^{\prime}=-u_{1} v_{2}+u_{2} w_{2}$. Then (change of decomposition basis) $\sigma v_{1} \oplus \sigma w_{1}=\sigma v_{1}^{\prime} \oplus \sigma w_{1}^{\prime}$ and $\tau v_{2} \oplus \tau w_{2}=\tau v_{2}^{\prime} \oplus \tau w_{2}^{\prime}$. Hence $X=\sigma w_{1}^{\prime} \oplus \tau w_{2}^{\prime} \oplus\left(\left(\sigma v_{1}^{\prime} \oplus \tau v_{2}^{\prime}\right)+\mathbb{Z} \frac{1}{p q}\left(v_{1}^{\prime}+v_{2}^{\prime}\right)\right)$, so X has rank -1 summands of types σ and τ.

However, Lemma 2.4 settles positively a special case.
Lemma 2.4. Let $G=A \oplus B$ where A is completely decomposable τ-clipped and B is τ-clipped. Then G is τ-clipped.
Proof. We may assume that $\operatorname{rank} A=1$. In fact, if $A=A_{1} \oplus \cdots \oplus A_{k}$ where $\operatorname{rank} A_{i}=1$, then $A_{k} \oplus B$ is τ-clipped by the rank 1 case, $A_{2} \oplus \cdots \oplus A_{k} \oplus B$ is τ-clipped by induction, and $A \oplus B$ is τ-clipped by the rank 1 case.

By way of contradiction assume that $G=\tau v \oplus C=\sigma a \oplus B$ with $\tau \not \approx \sigma$ (as rational groups or $\tau \neq \sigma$ as types). Let $\alpha: G \rightarrow \sigma a \subseteq G, \beta: G \rightarrow B \subseteq G, \delta: G \rightarrow \tau v \subseteq G$, and $\gamma: G \rightarrow C \subseteq G$ be the projections (considered endomorphisms of G) that come with the stated decompositions.
(1) We have $v=v \alpha+v \beta$ uniquely. Suppose $v \alpha=0$. Then $(\tau v) \alpha=0$ and the summand τv is contained in $\operatorname{Ker} \alpha=B$. Then τv is a summand of B contradicting the fact that B is τ-clipped. So $\alpha: \tau v \rightarrow \sigma a$ is a monomorphism and $\tau \leq \sigma$.
(2) We have $a=a \delta+a \gamma$. Suppose that $a \delta=0$. Then $(\sigma a) \delta=0$ and the summand σa is contained in $\operatorname{Ker} \delta=C$. Hence $C=\sigma a \oplus C^{\prime}$ for some C^{\prime} and $G=\tau v \oplus \sigma a \oplus C^{\prime}=\sigma a \oplus B$. Hence $\frac{G}{\sigma a} \cong \tau v \oplus C^{\prime} \cong B$. This contradicts the fact that B is τ-clipped. So $\delta: \sigma a \rightarrow \tau v$ is a monomorphism and hence $\sigma \leq \tau$.
(3) By (1) and (2) we get the contradiction $\sigma=\tau$, saying that $G=\sigma a \oplus B$ does not have a rank-1 summand of type τ, and the special case is proved.

Theorem 2.5 (Main Decomposition). Let G be a group. Then G has a decomposition $G=A_{0} \oplus A_{1}$ in which A_{0} is completely decomposable and A_{1} is clipped. If also $G=B_{0} \oplus B_{1}$ where B_{0} is completely decomposable and B_{1} is clipped, then $A_{0} \cong B_{0}$ and consequently $A_{1} \cong{ }_{\mathrm{nr}} B_{1}$.
Proof. Let A_{0} be a completely decomposable summand of G of maximal rank. Then $G=A_{0} \oplus A_{1}$ and A_{1} is clipped.

Let $A_{0}=\bigoplus_{\rho} A_{\rho}$ and $B_{0}=\bigoplus_{\rho} B_{\rho}$ be the homogeneous decompositions of the completely decomposable groups A_{0} and B_{0}. By allowing A_{ρ} and B_{ρ} to be the zero group, we may assume that the summation index ranges over all types ρ.

We consider $G=A_{\tau} \oplus\left(\bigoplus_{\rho \neq \tau} A_{\rho} \oplus A_{1}\right)=B_{\tau} \oplus\left(\bigoplus_{\rho \neq \tau} B_{\rho} \oplus B_{1}\right)$. By Lemma 2.4 $\bigoplus_{\rho \neq \tau} A_{\rho} \oplus A_{1}$ and $\bigoplus_{\rho \neq \tau} B_{\rho} \oplus B_{1}$ are both τ-clipped. Hence by Lemma 2.2 we conclude that $A_{\tau} \cong B_{\tau}$. Here τ was an arbitrary type, and the claim is clear.

The fact that $A_{1} \cong{ }_{\mathrm{nr}} B_{1}$ follows from the isomorphism $A_{0} \oplus A_{1} \cong A_{0} \oplus B_{1}$.

Corollary 2.6. Suppose G has rank n and G realizes the partitions $(1, \ldots, 1, m)$ and $\left(1, \ldots, 1, m^{\prime}\right)$. Then $m=m^{\prime}$.

Proof. The indecomposable summands of ranks m and m^{\prime} are necessarily clipped. By Theorem [2.5 the completely decomposable parts of the decompositions are isomorphic and hence have the same rank, i.e., $n-m=n-m^{\prime}$, and hence $m=$ m^{\prime}.

In particular there is no group that realizes both $(1,1,2)$ and $(1,3)$.
We call a decomposition $G=G_{c d} \oplus G_{c l}$ with $G_{c d}$ completely decomposable and $G_{c l}$ clipped a Main Decomposition of G.

Main Decompositions are unique up to near isomorphism but not unique. For example, let $X=\tau v \oplus\left(\left(\tau v_{1} \oplus \sigma v_{2}\right)+\mathbb{Z} \frac{1}{p}\left(v_{1} \oplus v_{2}\right)\right)$, where p is a prime not dividing σ or τ. The group $\left(\tau v_{1} \oplus \sigma v_{2}\right)+\mathbb{Z} \frac{1}{p}\left(v_{1} \oplus v_{2}\right)$ is indecomposable, hence clipped. We also have $X=\tau\left(v+v_{1}\right) \oplus\left(\left(\tau v_{1} \oplus \sigma v_{2}\right)+\mathbb{Z} \frac{1}{p}\left(v_{1} \oplus v_{2}\right)\right)$ and $\tau v \neq \tau\left(v+v_{1}\right)$.

On the other hand, if $G=G_{c d} \oplus G_{c l}$ and $\operatorname{Hom}\left(G_{c d}, G_{c l}\right)=0$, then $G_{c d}$ is unique and direct complements of $G_{c d}$ are isomorphic ([8, Lemma 1.1.3]).

References

[1] David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR665251
[2] A. L. S. Corner, A note on rank and direct decompositions of torsion-free Abelian groups, Proc. Cambridge Philos. Soc. 57 (1961), 230-233. MR0241530
[3] A. L. S. Corner, A note on rank and direct decompositions of torsion-free Abelian groups. II, Proc. Cambridge Philos. Soc. 66 (1969), 239-240. MR0245670
[4] László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. Infinite abelian groups. Vol. II, Pure and Applied Mathematics, Vol. 36-II, Academic Press, New York-London, 1973. MR0255673 MR0349869
[5] E. L. Lady, Summands of finite rank torsion free abelian groups, J. Algebra 32 (1974), 51-52, DOI 10.1016/0021-8693(74)90171-9. MR0348008
[6] E. L. Lady, Almost completely decomposable torsion free abelian groups, Proc. Amer. Math. Soc. 45 (1974), 41-47, DOI 10.2307/2040603. MR0349873
[7] E. L. Lady, Nearly isomorphic torsion free abelian groups, J. Algebra 35 (1975), 235-238, DOI 10.1016/0021-8693(75)90048-4. MR0369568
[8] Adolf Mader, Almost completely decomposable groups, Algebra, Logic and Applications, vol. 13, Gordon and Breach Science Publishers, Amsterdam, 2000. MR1751515

Department of Mathematics, University of Hawail at Manoa, 2565 McCarthy Mall, Honolulu, Hawaii 96922

E-mail address: adolf@math.hawaii.edu
School of Mathematics and Statistics, The University of Western Australia, Nedlands, WA, Australia, 6009

E-mail address: phill.schultz@uwa.edu.au

[^0]: Received by the editors January 11, 2017 and, in revised form, February 19, 2017.
 2010 Mathematics Subject Classification. Primary 20K15, 20K25.
 Key words and phrases. Torsion-free abelian group of finite rank, direct decomposition, completely decomposable direct summand.

