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ALMOST PERIODIC SOLUTIONS

OF SUBLINEAR HEAT EQUATIONS

YI XIE AND PEIDONG LEI

(Communicated by Yingfei Yi)

Abstract. This paper is concerned with the existence and uniqueness of posi-
tive almost periodic solutions of a class of sublinear heat equations. The results
of this paper are the analogues of the corresponding results in the periodic case.

1. Introduction

The purpose of this paper is to study the existence and uniqueness of positive
almost periodic solutions of the sublinear heat equations subject to the Dirichlet
boundary condition on the whole real line

(1.1)

⎧⎨
⎩

∂u

∂t
−Δu = α(x, t)uq(x, t), (x, t) ∈ Ω× R,

u(x, t) = 0, (x, t) ∈ ∂Ω× R,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, 0 < q < 1, and α

is a positive bounded measurable function on Ω× R.
The time almost periodic dependence reflects the effects of certain “seasonal”

variations which are roughly but not exactly periodic. In contrast to periodic solu-
tions, almost periodic solutions have more application in physics, and the research
is more difficult (see for example [3, 8, 15, 16, 21]), since the uniform topology in
time in the whole space should be used.

Periodic solutions of the problem (1.1) have been widely investigated over the
past 30 years and there have been a great number of results. Beltramo and Hess
considered in [2] the linear case of (1.1) (i.e., q = 1), and later the authors dealt
with the superlinear case of (1.1) (i.e., q > 1) in [5,6,17]. In 2010, Yin and Jin [23]
gave a rather complete characterization for the evolutionary p-Laplacian, in terms
of the parameter p > 1 and the exponent q > 0 of the source, of whether or not
the positive periodic solutions exist. The existence of positive periodic solutions for
both the superlinear case and the sublinear case of (1.1) can be obtained as a special
case if one takes p = 2 in [23]. However, the problem on almost periodic solutions of
(1.1) has received much less attention until recently. It is worth mentioning that the
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authors studied in [10] the existence of almost automorphic solutions of sublinear
evolution equations, which includes (1.1) as one of the most important examples.
In general, the almost periodic function belongs to the almost automorphic function
class, but not vice versa. Later the results in [10] have been improved by Diagana
[4] to the almost periodic case. Unfortunately, those results in [4, 10] are based
on an incorrect compact embedding theorem (see Proposition 3.3 in [10]), and the
corresponding corrigendum can be found in [11]. This means that the existence of
almost periodic solutions for sublinear parabolic equations remains unsolved. And
that is exactly where our motivation for studying the existence of almost periodic
solutions to the problem (1.1) comes from.

It is well known that almost periodic solutions are closely connected with global
bounded solutions (cf. [1, 7, 8, 12, 13, 18, 19]). In the present paper, the upper and
lower solutions method and the energy estimate method are used to study the
existence of the global bounded solution. By constructing an appropriate auxiliary
function z(x, t) = uq(x, t) − uq(x, t + τ ), we get the relationship between the ε-
translation sets of α and uq, which guarantees the almost periodicity of the solution
u.

By the way, the authors considered in [20, 22, 23] the periodic solution of some
nonlinear degenerate parabolic equations. Therefore, we will continue to study the
almost periodicity of the solution to the evolutionary p-Laplacian with nonlinear
sources in future articles.

The paper is organized as follows. In Section 2, we give some notation and
definitions, as well as our main results. In Section 3, we first establish several
estimates of positive solutions defined on the half time axis and then prove the
theorems.

2. Definitions and main results

2.1. Definitions. First, we introduce the definition of the almost periodic function
as in [14].

Definition 2.1. LetX be a Banach space. We say that a function u(·, t) ∈ C(R;X)
is X almost periodic, denoted by u(·, t) ∈ AP (X), if for any ε > 0, the ε-translation
set

T (ε, u) =

{
τ ∈ R : sup

t∈R

‖u(·, t+ τ )− u(·, t)‖X < ε

}

is relatively dense; i.e., there is a number l = l(ε) > 0 such that any interval of
length l contains at least one number from T (ε, u).

For −∞ ≤ s < t ≤ +∞, denote Qt
s = Ω× (s, t).

Next we give several definitions of solutions to the problem (1.1) in the following
weak sense, which will be referred to on different occasions. In order to ensure the
nonlinear source term uq makes sense, the solution should be nonnegative. By the
property of infinite propagation of disturbances of the heat conduct equation, the
nontrivial and nonnegative solution must be positive on Ω× (−∞,+∞), so we call
it the positive solution.

Definition 2.2. Let −∞ < t0 < T < +∞. A function u is called a positive solution

of the problem (1.1) on QT
t0 if u ∈

◦
V

1,0
2 (QT

t0), u > 0 in QT
t0 , and for any function



ALMOST PERIODIC SOLUTIONS OF SUBLINEAR HEAT EQUATIONS 235

ϕ ∈
◦
W

1,1
2 (QT

t0) with ϕ(·, t0)|Ω = ϕ(·, T )|Ω = 0 the following integral equality holds:

(2.1)

∫∫
QT

t0

(
−u

∂ϕ

∂t
+∇u∇ϕ− αuqϕ

)
dxdt = 0.

A function u is called a positive solution of the problem (1.1) on Q+∞
−∞, provided

that for any −∞ < s < t < +∞, u is a positive solution of the problem (1.1) on
Qt

s.

Definition 2.3. A function u is called a positive upper solution of the problem
(1.1) on QT

t0 with the initial value u(x, t0) = u0(x) if u ∈ V 1,0
2 (QT

t0), u > 0 in QT
t0 ,

and for any nonnegative function ϕ ∈
◦
W

1,1
2 (QT

t0) with ϕ(·, t0)|Ω = ϕ(·, T )|Ω = 0
the following inequalities hold:

(2.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫∫
QT

t0

(
−u

∂ϕ

∂t
+∇u∇ϕ− αuqϕ

)
dxdt ≥ 0, (x, t) ∈ QT

t0 ,

u(x, t) ≥ 0, (x, t) ∈ ∂Ω× (t0, T ),

u(x, t0) ≥ u0(x), x ∈ Ω.

Replacing “≥” by “≤” in (2.2), the definition of a positive lower solution follows.
Furthermore, if u is a positive upper solution as well as a positive lower solution
with u(x, t0) = u0(x), then we call it a positive solution of the problem (1.1) on
QT

t0 with u(x, t0) = u0(x).

A function u is called a positive solution of the problem (1.1) on Q+∞
t0 with

u(x, t0) = u0(x) if, for any T > t0, u is a positive solution of the problem (1.1) on
QT

t0 with u(x, t0) = u0(x).

It is easy to see that if u is a positive solution of (1.1) on QT
t0 with the initial

value u(x, t0) = u0(x), then it is also a positive solution of (1.1) on QT
t0 , but not

vice versa.

Definition 2.4. A function u is called a positive global L∞(Ω)-bounded solution
of the problem (1.1) if u is a positive solution of (1.1) on Q+∞

−∞ satisfying

(2.3) esssup
t∈R

‖u(·, t)‖L∞(Ω) < +∞.

2.2. Main results. Now we state the main results of this paper.

Theorem 2.1. Suppose that α ∈ L∞(Q+∞
−∞), and S = inf

Ω×R

α(x, t) > 0. Then the

problem (1.1) admits uniquely a positive global L∞(Ω)-bounded solution u. More-
over, for r > 1

1−q , u is asymptotically stable in the following sense:

(2.4)

‖u1−q(·, t)− v1−q(·, t)‖Lr(Ω) ≤ ‖u1−q(·, t0)− v1−q
0 (·)‖Lr(Ω)e

M(t0−t) for all t ≥ t0,

where v is a positive solution of the problem (1.1) on Q+∞
t0 with v(x, t0) = v0(x) > 0

in Ω, v0 ∈ H1
0 (Ω) ∩ L∞(Ω), and M is a positive constant depending only on N , q,

Ω and r.

Theorem 2.2. Let r > 1
1−q . In addition to the assumptions of Theorem 2.1, if

α ∈ AP (Lr(Ω)), then the positive global L∞(Ω)-bounded solution u of the problem
(1.1) necessarily belongs to AP (Lr(Ω)).



236 YI XIE AND PEIDONG LEI

Remark 2.1. Under the assumptions of Theorem 2.1, if α is ω-periodic in t addition-
ally, i.e., α(x, t) = α(x, t+ ω) a.e. Ω× R, then the positive global L∞(Ω)-bounded
solution u of the problem (1.1) is necessarily ω-periodic in t. This is in accordance
with Theorem 2.1 in [23]. However we also prove the uniqueness and stability of
the positive periodic solution, and to our knowledge this has not been discovered
in the previous results on the subject.

3. Proofs of theorems

It is well known that there exists a positive solution u of the problem (1.1) on
Q+∞

t0 with the nontrivial and nonnegative initial value u(·, t0) = u0(·) ∈ L2(Ω) (cf.
[9, 24]).

Lemma 3.1. Suppose α∗ = sup
t∈R

∫∫
Qt+1

t

α
2

1−q (x, τ )dxdτ < +∞, u0 ∈ L2(Ω), and

u0 is nontrivial and nonnegative. Let u be a positive solution of the problem (1.1)
on Q+∞

t0 with the initial value u(x, t0) = u0(x). Then the following estimates hold:

(3.1) sup
t≥t0

‖u(·, t)‖2L2(Ω) + sup
t≥t0

‖∇u‖2
L2(Qt+1

t )
≤ C

(
‖u0‖2L2(Ω) + α∗),

(3.2) sup
t0≤t≤t0+1

(t−t0)‖∇u(·, t)‖2L2(Ω)+ sup
t≥t0+1

‖∇u(·, t)‖2L2(Ω) ≤ C
(
‖u0‖2L2(Ω)+α∗),

(3.3)

∫ t0+1

t0

(s−t0)

∥∥∥∥∂u(·, s)∂s

∥∥∥∥
2

L2(Ω)

ds+ sup
t≥t0+1

∥∥∥∥∂u∂s
∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
‖u0‖2L2(Ω)+α∗).

If u0 ∈ H1
0 (Ω) additionally, then

(3.4) sup
t≥t0

‖∇u(·, t)‖2L2(Ω) + sup
t≥t0

∥∥∥∥∂u∂s
∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
‖u0‖2H1

0 (Ω) + α∗).
Here we denote by C a positive constant which only depends on N , q, Ω.

Proof. In order to obtain some necessary estimates, we might as well assume that
the solution is appropriately smooth, since the same result can be obtained by
considering a related approximate problem.

(i) Multiplying the first equation in (1.1) by u and then integrating over Ω by
parts, we derive

1

2

d

dt
‖u(·, t)‖2L2(Ω) + ‖∇u(·, t)‖2L2(Ω) =

∫
Ω

α(x, t)u1+q(x, t)dx, t ≥ t0.

Then it follows from Young’s inequality and Poincaré’s inequality that

(3.5)
d

dt
‖u(·, t)‖2L2(Ω) + ‖∇u(·, t)‖2L2(Ω) ≤ C‖α(·, t)‖2/(1−q)

L2/(1−q)(Ω)
, t ≥ t0.

Thus

d

dt
‖u(·, t)‖2L2(Ω) + λ1‖u(·, t)‖2L2(Ω) ≤ C‖α(·, t)‖2/(1−q)

L2/(1−q)(Ω)
, t ≥ t0,
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where λ1 > 0 is the first eigenvalue of the problem −
ψ = λψ in Ω with ψ = 0 on
∂Ω. Multiplying the above inequality by eλ1t and then integrating over [s, t], we
get

‖u(·, t)‖2L2(Ω)e
λ1t−‖u(·, s)‖2L2(Ω)e

λ1s≤C

∫ t

s

‖α(·, τ )‖2/(1−q)

L2/(1−q)(Ω)
eλ1τdτ, t > s ≥ t0.

(3.6)

Now let t = s+ 1, and consequently

‖u(·, s+ 1)‖2L2(Ω) ≤ e−λ1‖u(·, s)‖2L2(Ω) + C

∫ s+1

s

‖α(·, τ )‖2/(1−q)

L2/(1−q)(Ω)
dτ

≤ e−λ1‖u(·, s)‖2L2(Ω) + Cα∗, s ≥ t0.

We therefore see that for any n ∈ N
+,

‖u(·, s+ n)‖2L2(Ω) ≤ e−nλ1‖u(·, s)‖2L2(Ω) +
Cα∗

1− e−λ1
, s ≥ t0.

Next let s = t0 in (3.6) to get

‖u(·, t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + Cα∗, t0 ≤ t ≤ t0 + 1.

It follows from the above two inequalities that

(3.7) sup
t≥t0

‖u(·, t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + Cα∗.

Integrating (3.5) over [t, t+ 1] and using (3.7), we have

(3.8) sup
t≥t0

‖∇u‖2
L2(Qt+1

t )
≤ ‖u0‖2L2(Ω) + Cα∗.

Combining (3.7)–(3.8) leads us to the estimate (3.1).
(ii) Multiplying the first equation in (1.1) by ∂u

∂t and then integrating over Ω, we
derive∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2(Ω)

+
1

2

d

dt
‖∇u(·, t)‖2L2(Ω) =

∫
Ω

α(x, t)uq(x, t)
∂u(x, t)

∂t
dx, t ≥ t0.

By Young’s inequality, we have
(3.9)∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2(Ω)

+
d

dt
‖∇u(·, t)‖2L2(Ω) ≤ q

∫
Ω

u2(x, t)dx+(1−q)

∫
Ω

α
2

1−q (x, t)dx, t ≥ t0.

We continue by multiplying (3.9) by t−s and then integrating over [s, τ ] (t0 ≤ s < τ )
to find that ∫ τ

s

(t− s)

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2(Ω)

dt+ (τ − s)‖∇u(·, τ )‖2L2(Ω)

≤(τ − s)
(
q‖u‖2L2(Qτ

s )
+ (1− q)‖α‖2/(1−q)

L2/(1−q)(Qτ
s )

)
+ ‖∇u‖2L2(Qτ

s )
.

(3.10)

Removing the first term on the left hand side of (3.10) and utilizing (3.7) and (3.8),
we obtain

(3.11) sup
s≤τ≤s+2

(τ − s)‖∇u(·, τ )‖2L2(Ω) ≤ C
(
‖u0‖2L2(Ω) + α∗), ∀s ≥ t0.
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Therefore

sup
s+1≤τ≤s+2

‖∇u(·, τ )‖2L2(Ω)

≤ sup
s+1≤τ≤s+2

(τ − s)‖∇u(·, τ )‖2L2(Ω)

≤ sup
s≤τ≤s+2

(τ − s)‖∇u(·, τ )‖2L2(Ω)

≤C
(
‖u0‖2L2(Ω) + α∗), ∀s ≥ t0.

From the arbitrariness of s, we thereby see that

sup
τ≥t0+1

‖∇u(·, τ )‖2L2(Ω) ≤ C
(
‖u0‖2L2(Ω) + α∗).

Now let s = t0 in (3.10) to get that

sup
t0≤τ≤t0+1

(τ − t0)‖∇u(·, τ )‖2L2(Ω) ≤ C
(
‖u0‖2L2(Ω) + α∗).

We thereupon conclude from the above two inequalities that
(3.12)

sup
t0≤t≤t0+1

(t− t0)‖∇u(·, t)‖2L2(Ω) + sup
t≥t0+1

‖∇u(·, t)‖2L2(Ω) ≤ C
(
‖u0‖2L2(Ω) + α∗).

Similarly, remove the second term on the left hand side of (3.10) to deduce that∫ t0+1

t0

(s− t0)

∥∥∥∥∂u(·, s)∂s

∥∥∥∥
2

L2(Ω)

ds+ sup
t≥t0+1

∫ t+1

t

∥∥∥∥∂u(·, s)∂s

∥∥∥∥
2

L2(Ω)

ds

≤ C
(
‖u0‖2L2(Ω) + α∗).

(3.13)

(iii) If u0 ∈ H1
0 (Ω) additionally, integrating (3.9) over [t0, τ ] and applying (3.7),

we have ∥∥∥∥∂u∂s
∥∥∥∥
2

L2(Qτ
t0

)

+ ‖∇u(·, τ )‖2L2(Ω)

≤ ‖∇u0‖2L2(Ω) + (1− q)‖α‖2/(1−q)

L2/(1−q)(Qτ
t0

)
+ q(τ − t0)

(
‖u0‖2L2(Ω) + Cα∗).

(3.14)

Hence remove the first term on the left hand side of (3.14) to find that

sup
t0≤τ≤t0+1

‖∇u(·, τ )‖2L2(Ω) ≤ C
(
‖u0‖2H1

0 (Ω) + α∗),
which together with (3.12) implies that

(3.15) sup
t≥t0

‖∇u(·, t)‖2L2(Ω) ≤ C
(
‖u0‖2H1

0 (Ω) + α∗).
Similarly, removing the second term on the left hand side of (3.14), we get∫ t0+2

t0

∥∥∥∥∂u(·, t)∂t

∥∥∥∥
2

L2(Ω)

dt ≤ C
(
‖u0‖2H1

0 (Ω) + α∗),
which together with (3.13) leads to

(3.16) sup
t≥t0

∥∥∥∥∂u∂s
∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
‖u0‖2H1

0 (Ω) + α∗).
Consequently (3.4) follows from (3.15) and (3.16). The proof is complete. �
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Proof of Theorem 2.1. (i) We will construct a pair of bounded upper and lower
solutions of the problem (1.1) as in [23]. Choose r to be sufficiently large such that
Ω ⊂ Br/2. Then let λ1, λ1r be the first eigenvalue of the Laplacian equation with
homogeneous Dirichlet boundary value conditions on Ω and Br respectively, ψ1(x),
ψ1r(x) with ‖ψ1‖L∞(Ω) = ‖ψ1r‖L∞(Br) = 1 being the corresponding eigenfunction
corresponding to λ1 and λ1r. Precisely speaking, ψ1, ψ1r satisfy that{

−Δψ1(x) = λ1ψ1(x) in Ω,

ψ1(x) = 0 on ∂Ω,{
−Δψ1r(x) = λ1rψ1r(x) in Br,

ψ1r(x) = 0 on ∂Br.

It is well known that ψ1(x) > 0 for x ∈ Ω, ψ1r(x) > 0 for x ∈ Br. Thus there
exists a constant γ > 0 such that ψ1r(x) > γ for x ∈ Ω. Let Φ(x) = κ1ψ1(x) with
κ1 = ( S

λ1
)1/(1−q), and Ψ(x) = κ2ψ1r(x) with κ2 = max{ 1

γ (
L
λ1r

)1/(1−q), κ1

γ }, where
L = esssup

Ω×R

α(x, t).

Now consider the following problem:

(3.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
−Δu = α(x, t)uq(x, t), (x, t) ∈ Ω× (−l,+∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (−l,+∞),

u(x,−l) = Φ(x), x ∈ Ω.

By the choice of Φ(x),Ψ(x), κ1 and κ2, it is easy to check that Φ(x) and Ψ(x) are a
pair of lower and upper solutions of the problem (3.17) with 0 < Φ(x) ≤ Ψ(x) ≤ κ2

for x ∈ Ω. Thus for any l ∈ N
+, the problem (3.17) admits a solution u(l)(x, t)

satisfying

(3.18) Φ(x) ≤ u(l)(x, t) ≤ Ψ(x), (x, t) ∈ Ω× (−l,+∞).

Furthermore applying Lemma 3.1, we have

(3.19) sup
t≥−l

‖u(l)(·, t)‖2H1
0 (Ω) + sup

t≥−l

∥∥∥∥∂u(l)

∂s

∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
α∗ + ‖Φ‖2H1

0 (Ω)

)
,

where C is a constant independent of l.
(ii) Fix t0 = −1. Due to (3.19), there exist a subsequence {u(l1(i))}+∞

i=1 ⊂
{u(l)}+∞

l=1 and a limit function u(1) ∈ L∞((−1,+∞);H1
0 (Ω)) with

∂u(1)

∂t ∈ L2(QT
s )

for any −1 ≤ s < T < +∞, such that⎧⎪⎪⎨
⎪⎪⎩
u(l1(i)) → u(1) strongly in L2(QT

s ),

u(l1(i)) → u(1) a.e. in QT
s ,

∇u(l1(i)) → ∇u(1) weakly in L2(QT
s )

as i → +∞. It follows from (3.18) and (3.19) that⎧⎪⎨
⎪⎩

sup
t≥−1

‖u(1)(·, t)‖2H1
0(Ω) + sup

t≥−1

∥∥∥∥∂u(1)

∂s

∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
α∗ + ‖Φ‖2H1

0 (Ω)

)
,

Φ(x) ≤ u(1)(x, t) ≤ Ψ(x), (x, t) ∈ Ω× (−1,+∞).
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By repeating the process above, we see that for t0 = −j, j = 2, 3, · · · , there ex-
ist a family of subsequences {u(lj(i))}+∞

i=1 ⊂ {u(lj−1(i))}+∞
i=1 ⊂ · · · ⊂ {u(l1(i))}+∞

i=1

(where lj(i) ≥ j for i = 1, 2, · · · ) and a function sequence {u(j)}+∞
j=1, u(j) ∈

L∞((−j,+∞);H1
0 (Ω)) with

∂u(j)

∂t ∈ L2(QT
s ) for any −j ≤ s < T < +∞, such

that

(3.20)

⎧⎪⎪⎨
⎪⎪⎩
u(lj(i)) → u(j) strongly in L2(QT

s ),

u(lj(i)) → u(j) a.e. in QT
s ,

∇u(lj(i)) → ∇u(j) weakly in L2(QT
s )

as i → +∞, and

(3.21)

⎧⎪⎨
⎪⎩

sup
t≥−j

‖u(j)(·, t)‖2H1
0 (Ω) + sup

t≥−j

∥∥∥∥∂u(j)

∂s

∥∥∥∥
2

L2(Qt+1
t )

≤ C
(
α∗ + ‖Φ‖2H1

0 (Ω)

)
,

Φ(x) ≤ u(j)(x, t) ≤ Ψ(x), (x, t) ∈ Ω× (−j,+∞).

Notice that u(j)(x, t) = u(j−1)(x, t) in Ω× (−(j − 1),+∞) (j = 2, 3, · · · ). That is
to say, u(j) is an extension of u(j−1) to Ω× (−j,+∞).

Define u : Ω× R → R as follows:

u(x, t) = u(j)(x, t) if (x, t) ∈ Ω× (−j,+∞),

where j = 1, 2, · · · .
(iii) The next goal is to show that u is a positive solution of the problem (1.1)

on Q+∞
−∞. By (3.21), we have

(3.22)

⎧⎪⎨
⎪⎩

sup
t∈R

‖u(·, t)‖2H1
0(Ω) + sup

t∈R

∥∥∥∥∂u∂s
∥∥∥∥
2

L2(Qt+1
t )

≤ C(α∗ + ‖Φ‖2H1
0 (Ω)),

Φ(x) ≤ u(x, t) ≤ Ψ(x), a.e. (x, t) ∈ Ω× R.

This implies that u ∈ L∞(R;H1
0 (Ω)) with

∂u
∂t ∈ L2(QT

s ) for any −j < s < T < +∞.
For any −∞ < s < T < +∞, there exists a j0 ∈ N

+ such that (s, T ) ⊂ (−j0,+∞).

From Definition 2.2, we have that for any function ϕ ∈
◦
W

1,1
2 (QT

s ) with ϕ(·, s)|Ω =
ϕ(·, T )|Ω = 0, the following integral equality holds:∫∫

QT
s

[
−u(lj0 (i))

∂ϕ

∂t
+∇u(lj0 (i))∇ϕ− α

(
u(lj0(i))

)q
ϕ

]
dxdt = 0.(3.23)

Letting i → +∞ in (3.23) and using (3.20), one gets∫∫
QT

s

[
−u(j0)

∂ϕ

∂t
+∇u(j0)∇ϕ− α

(
u(j0)

)q
ϕ

]
dxdt = 0.

Note that u = u(j0) on Ω× (−j0,+∞) and QT
s ⊂ Ω× (−j0,+∞). Therefore∫∫

QT
s

(
−u

∂ϕ

∂t
+∇u∇ϕ− αuqϕ

)
dxdt = 0.

From the arbitrariness of s and T , we see that u is a positive solution of the problem
(1.1) on Q+∞

−∞.
(iv) Now we prove the uniqueness of positive global L∞(Ω)-bounded solutions of

the problem (1.1). Let u1 and u2 be two positive global L∞(Ω)-bounded solutions
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of the problem (1.1) and denote w(x, t) = u1−q
1 (x, t)− u1−q

2 (x, t). We compute by
integration by parts

d

dt
‖w(·, t)‖rLr(Ω) = r(1− q)

∫
Ω

|w|r−2w(u−q
1 u1t − u−q

2 u2t)dx

= r(1− q)

∫
Ω

|w|r−2w
(
u−q
1 Δu1 − u−q

2 Δu2

)
dx

= − r(1− q)

∫
Ω

∇
(
|w|r−2w

)
· (u−q

1 ∇u1 − u−q
2 ∇u2)dx

− r(1− q)

∫
Ω

|w|r−2w(∇u−q
1 · ∇u1 −∇u−q

2 · ∇u2)dx,(3.24)

where r > 1
1−q . Note that

(3.25) ∇
(
|w|r−2w

)
· (u−q

1 ∇u1 − u−q
2 ∇u2) =

4(r − 1)

r2(1− q)

∣∣∣∇(|w|
r−2
2 w)

∣∣∣2 .
It follows from Cauchy’s inequality that

− w(∇u−q
1 · ∇u1 −∇u−q

2 · ∇u2)

=q
(
u−2q
1 |∇u1|2 + u−2q

2 |∇u2|2
)
− q

(
u1−q
2 u−q−1

1 |∇u1|2 + u1−q
1 u−q−1

2 |∇u2|2
)

≤q
(
u−2q
1 |∇u1|2 + u−2q

2 |∇u2|2 − 2u−q
1 u−q

2 ∇u1 · ∇u2

)
=

q

(1− q)2
|∇w|2 ,

and hence that

(3.26) −|w|r−2w(∇u−q
1 · ∇u1 −∇u−q

2 · ∇u2) ≤
4q

r2(1− q)2

∣∣∣∇(|w|
r−2
2 w)

∣∣∣2 .
We thereupon conclude from (3.24)–(3.26) that

d

dt
‖w(·, t)‖rLr(Ω) ≤

−4(−qr + r − 1)

r(1− q)

∫
Ω

∣∣∣∇(|w|
r−2
2 w)

∣∣∣2 dx.(3.27)

From Poincaré’s inequality, we observe that

(3.28)

∫
Ω

|w(·, t)|rdx ≤ C0

∫
Ω

|∇(|w|
r−2
2 w)|2dx,

where C0 is a positive constant depending only on N and Ω. Applying (3.28) and
recalling r > 1

1−q , we discover that

(3.29)
d

dt
‖w(·, t)‖rLr(Ω) ≤ −C1‖w(·, t)‖rLr(Ω), t ∈ R,

where C1 is a positive constant depending only on N , q, Ω and r.
We claim that u1 = u2. We argue by contradiction. Were the above claim false,

there would exist t0 ∈ R such that

‖w(·, t0)‖rLr(Ω) > 0.

Now consider the following ODE corresponding to (3.29):⎧⎨
⎩

dy

dt
= −C1y, t ≤ t0,

y(t0) = ‖w(·, t0)‖rLr(Ω).
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Clearly

y(t) = ‖w(·, t0)‖rLr(Ω)e
C1(t0−t), t ≤ t0.

Consequently

lim
t→−∞

y(t) = +∞.

Then applying the comparison principle of ODE we have

lim
t→−∞

‖w(·, t)‖Lr(Ω) = +∞.

However this conclusion is at variance with the boundedness of ‖w(·, t)‖rLr(Ω). This

contradiction confirms our claim, and so the uniqueness is proved.
(v) At last we intend to prove the stability of positive solutions. Assume that v

is a positive solution of the problem (1.1) on Q+∞
t0 with the initial value v(x, t0) =

v0(x) ∈ H1
0 (Ω) ∩ L∞(Ω). Let w(x, t) = u1−q(x, t) − v1−q(x, t), r > 1

1−q . Then

similarly as in the proof of (3.29), we have

d

dt
‖w(·, t)‖rLr(Ω) ≤ −M‖w(·, t)‖rLr(Ω), t ≥ t0,

where M is a positive constant depending only on N , q, Ω and r. Hence

‖w(·, t)‖Lr(Ω) ≤ ‖u1−q(·, t0)− v1−q
0 (·)‖Lr(Ω)e

M(t0−t), t ≥ t0.

That is to say,

‖u1−q(·, t)−v1−q(·, t)‖Lr(Ω) ≤ ‖u1−q(·, t0)−v1−q
0 (·)‖Lr(Ω)e

M(t0−t) → 0 as t → +∞.

The proof is complete. �

Proof of Theorem 2.2. Let u(x, t) be a positive global L∞(Ω)-bounded solution of
the problem (1.1). Then v(x, t) = u(x, t + τ ) is a positive global L∞(Ω)-bounded
solution of the following problem:

(3.30)

⎧⎨
⎩

∂v

∂t
−Δv = α(x, t+ τ )vq(x, t), (x, t) ∈ Ω× R,

v(x, t) = 0, (x, t) ∈ ∂Ω× R.

Denote

z(x, t) = u1−q(x, t)− v1−q(x, t).

For any r > 1, we compute by integration by parts

d

dt
‖z(·, t)‖rLr(Ω) = r(1− q)

∫
Ω

|z|r−2z(u−qut − v−qvt)dx

= r(1− q)

∫
Ω

|z|r−2z
(
u−qΔu− v−qΔv + α(x, t)− α(x, t+ τ )

)
dx

= − r(1− q)

∫
Ω

∇
(
|z|r−2z

)
· (u−q∇u− v−q∇v)dx

− r(1− q)

∫
Ω

|z|r−2z(∇u−q · ∇u−∇v−q · ∇v)dx

+ r(1− q)

∫
Ω

|z|r−2z(α(x, t)− α(x, t+ τ ))dx.(3.31)

Set

(3.32) Fτ,r = sup
t∈R

‖α(·, t)− α(·, t+ τ )‖Lr(Ω), τ ∈ R, 1/(1− q) < r < +∞.
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Utilizing (3.25), (3.26) and Hölder’s inequality, we deduce that
(3.33)

d

dt
‖z(·, t)‖rLr(Ω) ≤

−4(−qr + r − 1)

r(1− q)

∫
Ω

|∇(|z| r−2
2 z)|2dx+ r(1− q)Fτ,r‖z‖r−1

Lr(Ω).

But inequality (3.28) allows us to estimate

d

dt
‖z(·, t)‖rLr(Ω) ≤ ‖z‖r−1

Lr(Ω)

[
−4(−qr + r − 1)

C0r(1− q)
‖z‖Lr(Ω) + r(1− q)Fτ,r

]
,

r > 1/(1− q).

For the sake of simplicity of notation, we write C1 = 4(−qr+r−1)
C0r(1−q) , C2 = r(1 − q),

whereupon the above inequality becomes

d

dt
‖z(·, t)‖rLr(Ω) ≤‖z‖r−1

Lr(Ω)(−C1‖z‖Lr(Ω) + C2Fτ,r), r > 1/(1− q).(3.34)

We claim that

(3.35) sup
t∈R

‖z(·, t)‖Lr(Ω) ≤
C2

C1
Fτ,r.

We argue by contradiction. Were the above inequality false, there would exist
t0 ∈ R such that

(3.36) ‖z(·, t0)‖Lr(Ω) >
C2

C1
Fτ,r.

Now consider the following ODE:⎧⎨
⎩

dy

dt
=

(
−C1y

1
r + C2Fτ,r

)
y

r−1
r , t ≤ t0,

y(t0) = ‖z(·, t0)‖rLr(Ω).

From (3.36), we see that γ � −C1y
1
r (t0)+C2Fτ,r < 0. It follows from the decreasing

property of y(t) that
dy

dt
≤ γy

r−1
r , t ≤ t0.

This implies that

r(y
1
r (t0)− y

1
r (t)) ≤ γ(t0 − t), t ≤ t0.

That is,

ry
1
r (t) ≥ ry

1
r (t0)− γ(t0 − t), t ≤ t0.

Consequently
lim

t→−∞
y(t) = +∞.

We get from the comparison principle of ODE that

lim
t→−∞

‖z·, t)‖Lr(Ω) = +∞.

However this conclusion is at variance with the boundedness of ‖z(·, t)‖Lr(Ω). This
contradiction confirms (3.35).

According to the differential mean value theorem we have

|z| = (1− q)[θu+ (1− θ)v]−q|u− v| ≥ (1− q)‖u‖−q
L∞(Ω×R)|u− v|,

where θ ∈ (0, 1). Thus we obtain from the above inequality and (3.35) that

sup
t∈R

‖u(·, t)− u(·, t+ τ )‖Lr(Ω) ≤ C sup
t∈R

‖α(·, t)− α(·, t+ τ )‖Lr(Ω),
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where C is independent of τ . Hence u ∈ AP (Lr(Ω)). The proof is complete. �
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